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Abstract. Since being introduced by Andrew Casson, his namesake Invariant has received con-

siderable interest as being a both practically computable and theoretically interesting tool for

investigating homology 3 spheres. Since then, it has proven a springboard for new directions in
low-dimensional topology. With this comes different perspectives on the invariant, each having

their own benefits and drawbacks. In this survey paper, we explore these perspectives and some
of their distinct applications.
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Figure 1. Gluing together two disks along their boundaries. Heegaard splittings
do this one dimension higher

1. Introduction

The primary notion of equality between oriented three manifolds is that of orientation preserving
homeomorphism. More precisely, if M,N are closed 3 manifolds, then an orientation is a choice
of fundamental class [M ], [N ] for each of them. Then if f : M → N is a homeomorphism, it is
orientation presrving if f∗[M ] = [N ], and it is orientation reversing if f∗[M ] = −[N ]. If M =
(M, [M ]) is an oriented manifold, then we define M̄ = (M,−[M ]) to be the manifold with opposite
orientation.

We will consider oriented 3 manifolds up to orientation preserving homeomorphism. General
closed three manifolds have many homological obstructions, and since homology is easy to calculate,
we will not care much about these. Instead, we focus on various forms of homology 3 spheres: that
is, closed 3 manifolds M with H∗(M ;Z) = H∗(S

3;Z). We may at times also consider rational ho-
mology spheres, with the same definition as regular (integral) homology spheres but with Z replaced
by Q. Such manifolds are automatically orientable. To understand homology 3 spheres, we try to
find (hopefully simple) invariants of oriented homology 3 spheres. The Casson invariant is a perfect
example of this, being a Z-valued invariant of oriented homology three spheres which is both under-
standable theoretically and easy to compute. Each section of this paper introduces a new definition
of the Casson invariant to understand this framework better.

1.1. Heegaard splittings. Consider the standard embedding of the solid torus into space D2 ×
S1 ↪→ R3 ∪{∞} = S3. If we delete the interior of the solid torus from S3, we get another compact 3
manifold with boundary, consisting of the outside of the torus. This exterior is also homeomorphic
to a solid torus. Thus, we can consider S3 to be built by ‘gluing together’ two solid tori. Another
way to see this is to equate D4 with D2 ×D2 and take the boundary, resulting in

S3 = ∂D4 = (∂D2 ×D2) ∪ (D2 × ∂D2) = S1 ×D2 ∪D2 × S1

In general, if X,Y are two compact manifolds with boundaries ∂X, ∂Y , and if f : ∂X → ∂Y is a
homeomorphism, then we can define a new manifold X ∪f Y to be the space

X ∪f Y := (X ⊔ Y )/(x ∼ f(x))

where x ∈ ∂X. Then X ∪f Y is another compact manifold, this time without boundary.
If X and Y are oriented manifolds, we can give X ∪f Y an orientation by requiring that f is an

orientation reversing homeomorphism of the boundaries (where the orientation of ∂X is induced by
the orientation of X). This motivates the following definition:
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Figure 2. Stabilizing a Heegaard splitting.

Definition. A Heegaard splitting of a closed, oriented 3 manifold M is a triple (M,H1, H2) consist-
ing of two genus g handlebodies H1, H2 ⊂ M such that H1 ∪H2 = M and H1 ∩H2 = ∂H1 = ∂H2.

Considering the inclusions i1, i2 : H1, H2 ↪→ M the Heegaard splitting views M as H1 ∪i1◦i−1
2

H2.

A helpful theorem is that in fact, every three manifold can be obtained by such a gluing.

Theorem 1 ([9]). Every closed, oriented 3 manifold admits a Heegaard splitting.

Proof. There are two proofs. The first proof is to work in the Piecewise Linear category. Take a
triangulation of the three manifold and thicken the one skeleton. The vertices become copies of
the ball B3 and edges become handles D2 × I. The result is a handlebody of some genus; dually,
the manifold with this skeleton removed will also be a handlebody. The second proof works in
the smooth category. The index 0 points give a ball B3, and the index 1 points provide 1-handle
attachements. Dually, the index 3 and 2 points also give balls and 1-handles, and together these two
handlebodies glue together to give the entire manifold. □

Two Heegaard splittings (M,H1, H2), (M,J1, J2) are equivalent if there is an orientation pre-
serving diffeomorphism M → M which sends Hi to Ji. For most purposes, equivalent Heegaard
splittings can be considered the same. One more relevant construction: given a genus g Heegaard
splitting (M,H1, H2), we can construct a genus g + 1 Heegaard splitting called the stabilization,
as follows: take a point p ∈ ∂H2, and consider a neighborhood p ∈ Np ⊂ M diffeomorphic to B3,
small enough such that under that diffeomorphism, H1 is the top half of B3 and H2 is the bottom
half, as in figure 2. Then glue a new handle B to H1 within Np, such that it bounds a disk, again

as in figure 2. Then with H ′
1 = H1 ∪ B and H ′

2 = H2 \B, then M = H ′
1 ∪H ′

2 is a new Heegaard
decomposition with genuses g + 1.

The point of all this is:

Theorem 2 ([9]). All Heegaard splittings of a 3 manifold M are stably equivalent, in the sense that
for any two decompositions (M,H1, H2) and (M,J1, J2), after some number of stabilizations to each
of them forming H ′

i, J
′
i , then (M,H ′

1, H
′
2)

∼= (M,J ′
1, J

′
2).
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Figure 3. The red curve lies on the surface while its blue push off stays above the
surface; the linking number is 1.

When one wants to prove a fact about 3 manifolds by using facts about Heegaard splittings, the
strategy is to (1) prove that fact given a Heegaard splitting, (2) prove that equivalent Heegaard
splittings preserve the fact, and lastly (3) that it remains true under stabilization. The power in
this is that stabilization is such a simple construction, so the proof strategy is versatile.

1.2. Alexander polynomial and Seifert surfaces. Given a 3 manifold M , a knot is a (smooth)
embedding S1 ↪→ M . A collection of disjoint knots is called a link. Knots and links are usually
considered up to isotopy, which is a smooth map F : [0, 1] × M → M such that at every point t,
Ft : M → M is a homeomorphism. Then two links are ambient isotopic, or just isotopic, if F carries
the images of one link onto the other. The standard embedding S1 ↪→ S3 is called the unknot.

Given a link L ⊂ Σ a homology sphere, a Seifert surface for L is a (connected, compact) oriented
surface F ⊂ Σ with ∂F = L (with the correct induced orientation). It is not hard to show that any
link in any homology sphere has an associated Seifert surface.

If k1, k2 ⊂ Σ are two knots and F is a Seifert surface for k1, then after an isotopy of k1 ∪ k2 we
can assume that k2 meets F transversely at each intersection. Whenever they meet, k2 is heading
either in the positive normal direction or the negative: weight the former as +1 and the latter as
−1. Then define lk(k1, k2) to be the sum of these weightings over all intersections. It is evident that
lk(k1, k2) = lk(k2, k1).

For F a Seifert surface of L, we take a list of simple closed curves x1, ..., xn generating a basis of
H1(F ;Z), and also fix their orientations to coincide with that of F . Then for each xi, we form the
positive push off x+

i , which is the same curve but pushed off of F slightly in the positive normal
direction, see figure 3.

The associated Seifert matrix S to F is then the matrix with coefficients Sij = lk(xi, x
+
j ), and

the Alexander polynomial for L is the polynomial

∆L⊂Σ(t) = det(t1/2S − t−1/2St)

where St is the transpose. If the ambient space is implied, especially if said space is S3, then the
notation may be simply ∆L. The Alexander polynomial is an invariant of the oriented link. If two
knots have linking number zero, then there is always a way to make sure that the Seifert surface for
k1 does not intersect k2, but it is not always possible to find Seifert surfaces for k1 and k2 that have
empty intersection. Latter such pairs are called boundary links.
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Definition. If k : S1 → S3 is a knot, then the mirror image k∗ of k is k composed with the
diffeomorphism σ : (x1, x2, x3, x4) 7→ (x1, x2, x3,−x4). The definition extends to links in the obvious
way.

The mirror image of a knot is not always isotopic to the knot itself, but the Alexander polynomial
is a bad way to try and detect this.

Lemma 1. ∆k(t) = ∆k∗(t)

Proof. The Seifert surface for k∗ can also be found by taking the mirror image. This reverses the ori-
entations of everything involved, including the positive push-off, so that in particular lk(σ(xi), σ(xj)

+) =
lk(σ(xi), σ(x

+
j )) = − lk(xi, x

+
j ). Thus Sk = −Sk∗ . Since the homology of any oriented surface is

always even-rank, the negative sign disappears in the determinant. □

There is also a way to define the Alexander polynomial for a knot in a rational homology sphere.
Its definition is somewhat more general (see [12]); its most important property is that it reduces to
the standard Alexander polynomial on integer homology spheres.

1.3. Dehn surgery. A different, usually more practical method of studying 3 manifolds is through
Dehn surgery. LetM be a 3 manifold. Any knot k comes equipped with a tubular neighborhoodN(k)
which is homeomorphic to D2 × S1. We can equip this neighborhood with the induced orientation
from M . Similarly, we can let E(k) := M \N(k) be the knot exterior: it also comes with an induced
orientation. Clearly the identity map serves as a function 1 : ∂N(k) → ∂E(k) which is orientation
reversing, meaning that we can take the viewpoint Σ = N(k) ∪1 E(k). Under the identification of
N(k) with D2 × S1, we can view this instead as

M = E(k) ∪f (D2 × S1)

Dehn surgery on k in Σ is the process of replacing f with some other homeomorphism of the
boundaries. In fact, every such f is determined by where it sends one closed curve. When gluing in
D2 × S1, the image of S1 × {0} determines the entire rest of the homeomorphism (up to isotopy),
by a two step process: first, once S1 × {0} is glued in, the image of a small collared neighborhood
S1× [−ϵ, ϵ] is uniquely determined. Then the rest of what we need to glue in, D2×S1 \(S1×(−ϵ, ϵ))
is homeomorphic to B3, and so is uniquely determined (up to isoptopy) by where its boundary ∂B3

is glued in–but this B3 shares its boundary with S1 × [−ϵ, ϵ] which we have already glued in, so it
is uniquely determined. See figure 4.

On the other side, if a homology class c ∈ H1(∂E(k);Z) is primitive—i.e., is not a multiple of any
other homology class—then it can be represented by the image of a simple, closed, non-serparating
curve (also called c) on ∂E(k). Thus up to isotopy, the possible surgeries are determined by the
primitive elements c ∈ H1(∂E(k);Z). Let hc be the homeomorphism of the boundaries which sends
S1×{0} to c. Then if M was our original 3 manifold, then we denote E(k)∪hc D

2×S1 by M + c ·k,
or sometimes Mc when the knot is understood.

In the case that Σ is a homology 3 sphere, we can do a bit better. In this case, there are two
special curves in ∂E(k), called the meridian and longitude, defined as follows: by Mayer-Vietoris,
H1(E(k);Z) ∼= Z. Let m be a class generating E(k), and pick a representative of m which is a
simple, closed, non-separating curve in ∂E(k). Then m is called a meridian of k. There is also, up
to isotopy, a unique closed, simple, non-separating curve in ∂E(k) which is null-homologous in E(k)
(and generates H1(N(k);Z)). We will call this a canonical longitude or just longitude of k. We pick
orientations of m and l such that lk(m, l) = 1.

Now, every curve c in the previous discussion of surgery can be uniquely expressed as c = p ·
m + q · l ∈ H1(∂E(k);Z). Thus we can refer to surgery on a knot k in a homology sphere by just
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Figure 4. A two step process

specifying k and the pair of integers (p, q). Since c is primitive, we can assume that p and q are
relatively prime, and since it turns out in addition that (−p,−q) surgery and (p, q) surgery are the
same (by an orientation preserving homeomorphism of D2 × S1), in fact we can just think of (p, q)
as a fraction p/q, including potentially ∞ and 0. We will write such a surgery as Σ + p

q · k.
As a simple example, if k is the unknot, then S3 + 0

1 · k ∼= S1 × S2. ∞ surgery on any knot will
likewise result in the original manifold.

Other than just doing surgery on one knot, we can do surgeries on a link. A framed link is a link
L ⊂ Σ and, for each component k of the link, a primitive homology class. Then by choosing the
knot neighborhoods N(k) to be small enough, we can do surgery on each knot separately at once.
The resulting manifold will be notated as Σ + L or ΣL. If Σ is a homology sphere, then we can
specify a fraction p/q instead of the homology classes, consistent with the above paragraphs. If all
the framings are integers, then the surgery is an integer surgery. This leads us to the following:

Theorem 3 (Lickorish–Wallace theorem). Every closed, orientable three manifold can be obtained
by integer surgery on a framed link in S3.

1.4. Kirby calculus. It is a natural question to ask when two (integer-framed) links L1,L2 give
rise to the same 3-manifold after performing surgery. The answer to this is Kirby Calculus. On the
one hand, given any three manifold we can connect sum it with S3 to get back the same manifold.
In terms of surgery, this is the same as adding a copy of a ±1 framed unknot to the link which is a
boundary link with your given link L. This is because ±1 surgery on the unknot results in S3 again.
Adding or deleting such a ±1 framed unknot is called the ‘first Kirby move’.

A more complicated move is called handle sliding. Take two knots k1, k2, with integer framings
n1, n2. Let k

′
2 be a longitude of E(k2) (so that lk(k2, k

′
2) = n2). Then let k# = k1#k′2 the connected

sum of the two knots. Then the handle slide of k1 over k2 consists of replacing the link k1 ∪ k2 with
the link k# ∪k2, as in figure 5. The framing of k2 remains the same, and the framing of k# becomes
n1 + n2 + 2lk(k1, k2). This is the ‘second Kirby move’, also called a handle slide.
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Figure 5. Notice that, in order to maintain a 0 linking number with the knot itself
(so that it is really null-homologous in E( )), the longitude of the trefoil includes
an extra ‘twist.’

Theorem 4 (Kirby’s Theorem, [4]). Applying Kirby moves to a link does not change the resulting
manifold. If surgery on L1,L2 give the same manifold, then the two links are related by a series of
Kirby moves.

Given a link L, we can create a ‘linking matrix’ consisting of the entries Lij = lk(ki, kj) ranging
over all components ki. Interpret the linking number of ki with itself to be the framing of ki. The
resulting matrix L is an integral, symmetric matrix. The effect of the first Kirby move is to add
a new row and column to L with the only new non-zero entry being a ±1 on the last diagonal.
The effect of the second Kirby move on two components ki and kj is to add the jth row to the ith
row, then the jth column to the ith column. This operation is just the symmetrized version of the
standard elementary row and column operations. In this way, many questions about the properties
of three manifolds can be reduced to asking questions about the properties of matrices under the
equivalence of these two moves.

Lemma 2 (Saveliev). Let Σ be a homology sphere. Then there is a link k1 ∪ ...∪ kn in S3 such that

(1) Σ = S3 + ϵ1 · k1 + ...+ ϵn · kn.
(2) ϵi = ±1 for all i.
(3) lk(ki, kj) = 0 for all i ̸= j.

Proof. The lemma is equivalent to stating that any such Σ has a presentation with a diagonal matrix
with only ±1s on the diagonal. Start with any linking matrix for Σ. It turns out that the linking
matrix represents the same quadratic form as the intersection form of an appropriate manifold with
boundary Σ, which for Σ a homology sphere must be invertible over Z by the obvious long exact
sequence. Thus in particular its determinant is ±1. We may also assume that the linking matrix is
indefinite by appending ±1s as needed. It is a linear algebra fact that we may diagonalize such a
matrix by elementary (integer) row and column operations: since L was symmetric, we may assume
these operations are also symmetric, and so realizable by the second Kirby move. Then since the
determinant of the matrix was ±1, these diagonalized entries must be ±1s. □
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We will call framed links of this form preferred links. These preferred links have the extra benefit
that every intermediate step, Σi = Σ + ϵ1k1 + ... + ϵi · ki, is also a homology sphere. Furthermore,
since the linking numbers are zero between each knot, it is not hard to find a Seifert surface for ki
which is disjoint from all other kjs to calculate the Alexander polynomial.

Lemma 3. If L is a preferred link in S3 with surgery Σ, then framed surgery on L∗ with coefficients
negated gives Σ with opposite coefficients.

Proof. Define ϕ : Σ + L → Σ + L∗ as follows: if x ∈ E(L), then send x 7→ x∗ the image of x under
the reflection. If x is part of a surgered component of Σ+L, then x ∈ D2 ×S1 for some solid torus.
Then send x to the equivalent solid torus of the mirror imaged knot, but under a reflection of the
solid torus across the longitude. Since the surgery coefficients were reversed, this map glues together
continuously, and its continuous inverse is exactly the same by symmetry. Thus the two manifolds
are homeomorphic. The fact that ϕ is orientation reversing is then immediate from examining ϕ
around a point x ∈ E(L); around this point, it is just the reflection map with local degree −1. □

Remark. We will often denote Σ with the opposite orientation as Σ. Sometimes, this may conflict
the notation for the topological closure of a space, but it should be clear in context.

Lemma 4. Let M be a rational homology sphere. Then there is a sequence of knots (ki)
m
i with

integral framings ni such that for each j, S3 + n1k1 + ...+ njkj is a rational homology sphere, and
S3 + n1k1 + ...nmkm = M .

Proof. Start with any integer surgery description of M , with some integrally framed sequence of
knots k1, ..., km. Let Li be the link associated to the collection of the first i knots, let Li be the
linking matrix of Li. For the same reason that the determinant of the linking matrix of an integer
homology sphere had to be ±1, the determinant of the linking matrix for a rational homology sphere
must be non-zero. Thus our problem is just to apply Kirby moves to make some L′ with det(L′

i) ̸= 0
for all i.

For any set of integers b1, ..., bm, we let B = (biδij)i,j be the diagonal matrix with bi along the
diagonal. Using the first Kirby move, expand L to be(

L
1m

)
Then by using the second Kirby move and adding bi times the bi+mth row / column to the ith row
/ column, we get another linking matrix

L′ =

(
L+B2 B

B 1m

)
The determinants det(L′

k) are each polynomials in b1, ..., bm. For k ≤ m, we can choose b1, ..., bm to
be large enough that L+B2 is a positive definite quadratic form, and thus Z ∋ det(L′

k) ̸= 0.
For m + 1 ≤ k ≤ 2m, we could choose all the bi to be zero, resulting in a determinant det(L′

k)
which is just the same as det(L) ̸= 0. Thus for any of the k, there is some (b1, ..., bm) such that
Z ∋ det(L′

k) ̸= 0. Since the determinants are all integer polynomials, some basic algebra shows
that there must be some (b1, ..., bm) that is non-zero on all the determinants simultaneously. This
(b1, ..., bm) gives us our result. □

2. Axioms

The simplest definition of the Casson invariant is an axiomatic one, where we specify that there
exists an invariant of homology 3 spheres satisfying given properties. Often times, this black box
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method is all one needs in practice to perform calculations with the invariant, in particular in order
to simply differentiate between oriented smooth manifolds.

Definition ([9]). A Casson invariant is an invariant λ of oriented homology 3 spheres satisfying
the following properties:

(1) λ(S3) = 0 and λ is surjective.
(2) For a knot k ⊂ Σ, and m ∈ Z, the difference

λ

(
Σ+

1

m+ 1
· k
)
− λ

(
Σ+

1

m
· k
)

Is independent of m.
We define the difference to be λ′

Σ(k) or just λ′(k). The third axiom is a kind of inde-
pendence condition. If k, l ⊂ Σ are both knots, and within Σ, lk(k, l) = 0, then for any
m,n ∈ Z,

λ

(
Σ+

1

m+ 1
· k +

1

n+ 1
· l
)
− λ

(
Σ+

1

m
· k +

1

n+ 1
· l
)

− λ

(
Σ+

1

m+ 1
· k +

1

n
· l
)

+ λ

(
Σ+

1

m
· k +

1

n
· l
)

is also independent of m and n, since it is equal to both

λ′
Σ+ 1

n+1 l
(k)− λ′

Σ+ 1
n l(k)

and
λ′
Σ+ 1

m+1k
(l)− λ′

Σ+ 1
mk(l)

which are independent of m and n respectively by axiom 2. Thus, we can define this
difference as λ′′(l, k). Then we declare

(3) For k, l bounding disjoint Seifert surfaces in Σ, λ′′(k, l) = 0.

These axioms for the Casson invariant essentially states that there is an invariant of homology
spheres which satisfies a very precise and well behaved surgery formula that depends only on the
knots in question. Notable, this definition does not establish existence of the invariant, which must
be proved via one of the other definitions. However, assuming existence, we obtain a surgery formula
which enables efficient computation of the invariant in most circumstances.

Theorem 5. The Casson invariant, if it exists, satisfies, for any knot k ⊂ Σ, the surgery formula:

λ′
Σ(k) =

1

2
∆′′

k⊂Σ(1) · λ′( )

and λ′( ) = ±1.

Proof. Start with any knot k and pick a presentation of the knot. At each crossing, we can swap
the crossing from being over/under to under/over or vice versa. After applying enough of these, the
knot will be unknotted. The operation of swapping a crossing can be realized by a Kirby move on
the diagram as in the first image in figure 6, so we place disjoint disks Di at every crossing with
boundaries ci that are boundary links in both S3 and S3 + k. For any given such c and k, let kc be
the knot k after applying the crossing change at c.



10 COLBY RILEY

Figure 6. Swapping a crossing and the result after swapping enough crossings

We want to look at λ′(kc) − λ′(k) = λ′
S3+c(k) − λ′(k) = λ′′(k, c). This difference is the same as

that of λ′(kc′) − λ′(kc) = λ′′
S3+c′(k, c) for c′ one of the other links: it can be verified by using the

definition of λ′′ and utilizing the fact that λ′′(c, c′) = λ′′
Σ+k(c, c

′) = 0 because of our choice of them
being boundary links, and axiom (3).

By induction, then, the change in λ′ from introducing the twist c does not actually depend on
what we do at any of the other twists, so we might as well do all of them first. This leaves us with
a knot k′ as in figure 6, with n full twists.

Call kn := k′c and notice that k1 = . Finally, using the same technique as above, we get that
λ′(kn) − λ′(kn−1) = λ′(k1) = λ′( ). By using the skein relations for the Alexander polynomial,
the same relationship holds for ∆′′

kn
(1)−∆′′

kn−1
(1) = ∆′′ (1). Together, this means that the change

from λ(k) to λ(kc) is the same as that for the Alexander polynomial, and in particular that λ′(k) is
proportional to λ′( ). By property (1) this means that λ′( ) = ±1.

This proof goes through the same for ∆′′
k(1) using the skein relations, and since ∆′′ (1) = 2, this

means that λ′(k) = 1
2∆

′′
k(1)λ

′( ). □

To demonstrate the power of the surgery formula, we can now use lemma 2 to prove several
properties.

Theorem 6. Assuming the Casson Invariant exists,

(1) It is unique up to the choice of λ′( ).
(2) λ(Σ) = −λ(Σ)
(3) λ(Σ1#Σ2) = λ(Σ1) + λ(Σ2)

Proof.

(1) Let Σ be a homology sphere. By lemma 2, we can assume Σ = S3 +
∑n

i=1 ϵi · ki for
lk(ki, kj) = 0 for i ̸= j, and ϵi = ±1. We induct on the size of n. First, let n = 1. If ϵ1 = 1,
then the surgery formula gives us that

1

2
∆′′

k(1)λ
′( ) = λ′(k) = λ(S3 +

1

ϵ1
· k1)− λ(S3 +

1

ϵ1 − 1
· k1)

= λ(S3 + ϵ1 · k1)− λ(S3 +
1

0
· k1) = λ(Σ)− λ(S3) = λ(Σ)
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Similarly, if ϵ1 = −1, then

1

2
∆′′

k(1)λ
′( ) = λ′(k) = λ(S3 +

1

0
· k1)− λ(S3 +

1

ϵ1
· k1)

= λ(S3)− λ(Σ) = −λ(Σ)

So the invariant is unique up to the choice of λ′( ), which by theorem 5 is ±1. Now
assuming the statement has been proven for n − 1, let Σ = S3 +

∑n
i=1 ϵi · ki. Then let

also Σj = S3 +
∑j

i=1 ϵi · ki. The statement about linking numbers guarantees that Σj is a
homology sphere, and that Σj + ϵj · kj = Σj+1. Then again, if ϵn = 1, then

λ(Σ)− λ(Σn−1) = λ(Σn−1 +
1

1
· kn)− λ(Σn−1 +

1

0
· kn)

=
1

2
∆′′

kn⊂Σn−1
(1)λ′( )

And the story is the same with ϵn = −1. Thus by adding λ(Σ0) to both sides, we conclude
that λ(Σ) is uniquely determined. In particular, we get by the same induction the stronger
statement that

λ(Σ) =

(
n∑

i=1

ϵi
2
λ′′
ki⊂Σi

(1)

)
λ′( )

(2) With the notation as before, by lemma 3 we can reverse the orientation of Σ by the surgery
Σ = −ϵ1k

∗
1 ∪ ... ∪ −ϵnk

∗
n. Then also by lemma 1 (noticing that since the linking numbers

are 0, the Alexander polynomials can be computed without special reference to the ambient
surgered-manifold), the above equation implies the result.

(3) Let Σ = S3 +
∑

i ϵiki for 1 ≤ i ≤ n and Σ′ = S3 +
∑

j ϵj lj for n ≤ j ≤ m Then the
connect sum can be made by performing the surgery on each of the two links separately,
with no interaction between the two of them. That is, we can consider ∪iki, ∪j lj to both
be in S3, but that the two links are separated by some copy of S2. Then also the Alexander
polynomial of a given knot lj is the same regardless of the surgery performed outside the
copy of S2 since any Seifert surface can be perturbed to be fully inside of the S2.

Thus we get by the above formula that

λ(Σ#Σ′) =

(
n∑

i=1

ϵi
2
λ′′
ki⊂Σi

(1)

)
λ′( ) +

 m∑
j=n

ϵj
2
λ′′
li⊂Σi

(1)

λ′( )

=

(
n∑

i=1

ϵi
2
λ′′
ki⊂Σi

(1)

)
λ′( ) +

 m∑
j=n

ϵj
2
λ′′
li⊂Σ′

j
(1)

λ′( )

= λ(Σ) + λ(Σ′)

□

2.1. Applications: chirality. A particularly interesting question about oriented three manifolds
is to ask when there is an orientation reversing homeomorphism from M to itself, that is, that
M ∼= M̄ . For example, considering S3 ⊂ R4, the map

(x1, x2, x3, x4) 7→ (x1, x2, x3,−x4)
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is an isomorphism S3 → S̄3. We call these manifolds achiral. The Casson invariant makes it easy
to find chiral 3 manifolds.

Theorem 7. The Poincare homology sphere is chiral, and there are infinitely many chiral 3 mani-
folds in M.

Proof. If M is a homology 3 sphere, and M ∼= M̄ , then on the one hand, λ(M) = λ(M̄). On
the other hand, by theorem 6, λ(M̄) = −λ(M), so in fact λ(M) = −λ(M) =⇒ λ(M) = 0.
The Poincare homology sphere Σ(2, 3, 5) is defined as −1 surgery on . By the surgery formula,
λ(Σ(2, 3, 5)) = ±1, so the manifold cannot be achiral. Then we can find infinitely many different
such manifolds by considering the nth connect sum #nΣ(2, 3, 5), which, via the additivity of the
Casson invariant gives a Casson invariant of ±n. □

3. Representations

The original, and probably more enlightening, definition of the Casson invariant is as a tool
for counting representations of the fundamental group into SU(2). One of the consequences of the
Poincare Conjecture is that for homology spheres, the fundamental group is often a key differentiator
between these spaces. Although studying the fundamental group is too hard, group theory tells us
that studying representations of a group is usually tractable. This section will mostly follow [9]. We
will usually use M to denote any smooth, compact manifold (possibly with boundary) of dimension
≤ 3. H will typically be a handlebody, and F a surface (often the boundary of a handlebody). F0

will be F with a small disc removed (a deformation retract of F minus a point).

Definition. R(M) := Hom(π1M,SU(2)) with the compact open topology.

Since any such manifold has a finitely presented fundamental group (with a generating set of size,
say, m), this Hom is exactly determined by where it sends its generators, with the relations acting
as polynomial relations inside of SU(2)m. In this way, R(M) is a subvariety of SU(2)m and is best
thought of as such.

Example 1. For H genus g, then R(H) ∼= SU(2)g. The orientation of R(H) is determined by the
orientation of SU(2) and an orientation of H1(H;Z). If F0 genus g, R(F0) ∼= SU(2)2g.

Proof. The fundamental group of H is free on g generators x1, ..., xg. Then a given homomorphism
ϕ is determined exactly by where it sends each ϕ(xi), so we have an isomorphism

R(M) ∼= SU(2)g

Given by ϕ 7→ (ϕ(x1), ..., ϕ(xg)). The orientation comes simply enough after this. The generators
{x1, ..., xg} are also generators of the homology, and an ordering of the generators of the homology
determines an ordering of the output in ϕ. Then F0 is the same, since its fundamental group is the
free product on 2g generators. □

Definition. A representation α ∈ R(M) is called reducible if, as an action on C2, there is a
nontrivial invariant subspace. Otherwise it is irreducible. Let Rirr(M) ⊂ R(M) be the subset of
irreducible representations of R(M).

This is the same definition of reducibility as in standard representation theory. Since the conjugacy
classes of SU(2) are copies of S1, a reducible representation is one which factors as a 1 dimensional
representation into U(1) = S1. In particular, this means that such representations are abelian. To
demonstrate that we do not actually lose much, we see that

Lemma 5. For Σ a homology sphere, Rirr(Σ) = R(Σ) \ θ (the trivial representation).
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Proof. As previously mentioned, reducible representations are abelian. But this means that they
factor through π1M/[π1M,π1M ] the commutator; since Σ is a homology sphere, this is trivial. Thus
every such representation is trivial. □

There is an action of SO(3) on the space of irreducible representations by conjugation: for
g ∈ SO(3), (g · α)(x) = gα(x)g−1. By irreducibility, this action is free, and so the quotient by this
action retains most desirable topological properties.

Definition. R(M) := Rirr(M)/SO(3), where the quotient is by the SO(3) action defined above.

Now we may finally see some examples.

Example 2. For H a genus g handlebody, R(H) is a smooth, oriented open manifold of dimension
3g − 3. R(F0) is similar, with dimension 6g − 3.

Proof. R(H) = SU(2)g as discussed before, and so is in particular a smooth, oriented manifold of
dimension 3g. The set of reducible representations is closed, since it is an algebraic subset of R(H)
formed by adding all the commutator relations (since reducible representations are exactly those
which factor through a copy of U(1)). Thus Rirr(H) is an open submanifold of SU(2)g. Then since
the SO(3) action on Rirr(H) is free, the quotient will also be a smooth, open manifold, and the
dimension will be 3 less since dimSO(3) = 3.

In particular, if g = 1, i.e., the handlebody is the torus, then all the representations will be
reducible so R(H) will be empty. □

Example 3 ([9]). For F a genus g surface, R(F ) is a smooth, oriented, open manifold of dimension
6g − 6. Its orientation is induced by that of R(F0).

Lemma 6. The association M 7→ R(M) is a contravariant functor.

Proof. π1 is a covariant functor, Hom is a contravariant functor in its first argument, and the
process of taking the irreducible subspace and quotienting by the SO(3) action and clearly preserves
functoriality. □

One might hope that for Σ a homology sphere, that R(Σ) would be always be a finite collection
of points, but this is sometimes too much to ask for. Intersection theory tells us that when we want
to count something, it is fruitful to consider it as a subspace of a larger space. Thus, we can take a
Heegaard splitting Σ = H1 ∪f H2, with ∂H1 := F , and consider the diagram of inclusions

Σ H1

H2 F

i1

i2 j1

j2

Of course, one may also add the inclusion of F0 into F . Since these inclusions each induce surjections
on the fundamental group, by functoriality, this gives us several similar commutative diagrams of
injections

R(Σ) R(H1) Rirr(Σ) Rirr(H1) R(Σ) R(H1)

R(H2) R(F ) Rirr(H2) Rirr(F ) R(H2) R(F )
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Which lets us consider R(Σ) as the intersection R(H1) ∩ R(H2) ⊂ R(F ) of oriented submanifolds
inside an oriented manifold. The orientation of R(H2) and R(F ) are both determined by the choice
of orientations for H1(F ;Z); F comes with an orientation induced from being the boundary of
H1 (whose orientation is induced from Σ). Then orient H1(F ;Z) by the natural symplectic basis
corresponding to H1(F ;Z) and Poincare Duality. Then given any orientation of H1(H1;Z), orient
H1(H2;Z) so that their direct sum H1(H1;Z) ⊕ H1(H2;Z) = H1(F ;Z) is orientation preserving.
Thus there are really two choices we make when we orient everything: (1) our choice of which
handlebody to be called H1, and (2) our choice of orientation of H1(H1;Z).

By example 2, dimR(H1) = dimR(H2) = 3g − 3, which in intersection theory we would expect
generically to have a 0 dimensional intersection in a 6g − 6 dimensional surface. This is reassuring,
since we want R(Σ) to be a finite collection of points. The obstruction to this being the case is
exactly the (lack of) transversality of the intersection.

3.1. Transversality. The transversality of intersections is related to the cohomology of these
spaces. If π is a finitely presented discrete group, it is a fact that the Zariski tangent space (the
algebro-geometric tangent space) at a point α ∈ Hom(π, SU(2)), can be identified with cocycles in
group cohomology: in fact, Tα Hom(π, SU(2)) ∼= Z1

α(π; su(2)). Then dividing by coboundaries is the
equivalent of modding out by the SO(3) action, so that

Tα(Hom(π, SU(2))/SO(3)) ∼= H1
α(π; su(2))

Where H1
α(π; su(2)) is the group cohomology with π acting on M via the adjoint: x · u = Adα(x) u

for u ∈ su(2). This correspondence of the tangent spaces with the group cohomology is not difficult,
but also beyond the scope of the current paper (see [9]).

As an example, if θ is the trivial representation, then the cocycle condition is ζ(xy) = ζ(x) +
Adθ(x) ζ(y) = ζ(x) + ζ(y), so that it must be an actual homomorphism, and in particular ζ(xy) =
ζ(yx), so ζ descends to the abelizanization of π. Thus, if π = π1M , then by the universal coefficient
theorem,

H1
θ (π1M ; su(2)) = Hom(π1M ; su(2)) = Hom(H1(M); su(2)) = H1(M ; su(2))

In particular, this gives us

Lemma 7. For Σ a homology sphere, the intersection R(H1)∩R(H2) ⊂ R(F ) is transversal at the
trivial representation θ.

Proof. To show that they are transversal inside R(F ), it is easier to consider them in the larger
space R(F0), where F0 is F with a small disk deleted from it. Since π1F0 is a free group on
2g generators, R(F0) ∼= SU(2)2g is an oriented compact surface as well (c.f. example 2), and is
generally easier to work with. Now the tangent spaces being transverse at θ is the same as saying
that j∗1TθR(H1) + j∗2TθR(H2) = TθR(F0).

By the correspondence above (and noting that H1(F0; su(2)) = H1(F ; su(2))), it is the same as
asking that i∗1 + i∗2 : H1(H1; su(2)) ⊕H1(H2; su(2)) → H1(F ; su(2)) is an isomorphism. But these
maps are part of the Mayer-Vietoris sequence, and since Σ is a homology sphere, exactness gives us
an isomorphism. □

Lemma 8. For (Σ, H1, H2) a handlebody decomposition of a homology sphere, then the intersection
R(H1) ∩R(H2) ⊂ R(F ) is transversal at α iff H1

α(π1Σ; su(2)) = 0.
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Figure 7. Two different ways of compactly resolving an intersection

Proof. By the associations of the tangent spaces to group cohomology, this is a purely homological
question. In fact, the Mayer Vietoris sequence gives us

0 H1
α(π1Σ, su(2)) H1

α(π1H1, su(2))⊕H1
α(π1H1, su(2)) H1

α(π1F, su(2))
j∗1+j∗2

An intersection is transversal iff the map i1+i2 : TαR(H1)⊕TαR(H2) → TαR(F ) is surjective. Thus
by the correspondence with group cohomology, j∗1 + j∗2 must be surjective. By dimension counting
the tangent spaces (3g− 3+ 3g− 3 = 6g− 6) it is surjective iff it is injective. By exactness this will
hold iff H1

α(π1Σ; su(2)) = 0. □

This last lemma is particularly interesting because it says that the transversality of the intersection
does not depend on the Handlebody decomposition we choose. Thus we can separate homology
spheres into 2 categories: those with all transverse intersections and those with some non-transverse
intersections - we call the former nondegenerate and the latter degenerate.

3.2. Completing the definition.

Lemma 9. R(Σ) is compact.

Proof. Since R(M) ⊂ SU(2)k is a subvariety (so closed) of a compact space, it is also compact. Next,
by lemma 5, Rirr(Σ) = R(Σ)\{θ}, so to show that Rirr(Σ) is compact, we need to show that θ is an
isolated point of R(Σ). By functoriality of the above diagrams, we know that R(Σ) = R(H1)∩R(H2).
By lemma 7, we know that the two spaces intersect transversely at θ. By dimension counting,
the intersection is generically 0 dimensional, and thus transverse intersections are isolated points:
because of this, Rirr(Σ) = R(Σ) \ {θ} is still compact, since all we did was remove a single isolated
point.

Lastly, once we know that Rirr(Σ) is compact, the SO(3) quotient is of course also compact. □

At this point, if R(H1) really intersected R(H2) transversely, then it would follow that R(Σ) was
a compact manifold of dimension 0, and thus a finite collection of points. This is not necessarily
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the case. Instead, we choose a relatively compact neighborhood of R(Σ), and perturb R(H2) with
support inside of this neighborhood so that the intersection is transverse.

Let R̃(H2) be this perturbation to R(H2) that makes the intersection transverse: then the inter-
section is still compact, but now it is a manifold. By examples 2 and 3, it is the intersection of two
manifolds of dimension 3g − 3 inside a space of dimension 6g − 6, so the resulting intersection is 0
dimensional and so a finite collection of points. Finally, we may count them. Since there was no
canonical way to choose R̃(H2), we must count them with sign since, as in figure 7, it could be the
case that canceling pairs are added. But when they are counted with sign, we finally get:

Definition. Let x ∈ R(H1) ∩ R̃(H2). Then since the intersection is transverse, TxR(H1) ⊕
TxR̃(H2) ∼= TxR(F ). If this identification is orientation preserving, let µ(x) = 0, and otherwise
µ(x) = 1. Then

λ(Σ, H1, H2) :=
(−1)g

2

∑
x∈R(H1)∩R̃(H2)

(−1)µ(x)

Remark. This definition a priori depends on the choices we made earlier about orientation; specifi-
cally, the choice of orientation for H1(H1;Z). However, if we swap the orientation of this homology
group, then the orientation of the other group H1(H2;Z) must swap as well by our specification of

the orientation of their direct sum. Thus the actual orientation of TxR(H1) ⊕ TxR̃(H2) does not
change. It is similar to show that the invariant does not actually depend on which handlebody we
called H1.

Finally we have defined the Casson invariant for handlebody decompositions. It takes some more
effort to show that this definition satisfies the same properties as the previous definition. For a full
proof of these properties, see [9]. However, we will prove some of them to give a taste of what it is
like to work with the invariant. In particular, we will show that λ does not actually depend on the
handlebody decomposition.

Theorem 8. The Casson invariant λ(Σ, H1, H2) is independent of the handlebody decomposition,
and so is actually an invariant of the underlying oriented manifold.

Proof. Fix two handlebody decompositions (Σ, H1, H2) and (Σ, H ′
1, H

′
2). If they are equivalent, then

there is an orientation preserving homeomorphism f between the two, and by chasing through the
functoriality of R, it is clear that they give the same invariant. Thus by theorem 2, it suffices
to show that the invariant does not change under stabilization; let H ′

1, H
′
2 be the stabilization of

H1, H2. Denote the genus of H1, H2 as g, and let F = H1 ∩ H2, F
′ = H ′

1 ∩ H ′
2 be the genus g

(g+1, respectively) boundary surface. The representation space R(F ) is somewhat complicated, so
we excise a small disc from F to create a new F0 whose representation space is a better behaved
ambient space.

The idea of the proof is that the extra elements of the fundamental group for H ′
1 and H ′

2 do not
interact with each other. Thus, when we take the intersections in the representation spaces, they
should not contribute anything to R(Σ).

π1(F
′) has two new natural generators, in addition to those of π1F

′. Let a be the generator which
is also a new generator of π1(H

′
1) and b the new generator of π1(H

′
2). Since π1H

′
1 = ⟨a⟩ ∗ π1H1, and

similarly with π1H
′
2, we get that their representation spaces are R(H ′

k) = SU(2)×R(Hk). Similarly,
π1(F

′
0) = ⟨a⟩ ∗ ⟨b⟩ ∗ π1(F0), so when viewing the inclusions of F ′

0 ↪→ H ′
1, H

′
2, we get identifications

R(H ′
1) = SU(2)× {1} ×R(H1) ⊂ SU(2)× SU(2)×R(F0)

R(H ′
2) = {1} × SU(2)×R(H2) ⊂ SU(2)× SU(2)×R(F0)
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So R(H ′
1)∩R(H ′

2) = {1}×{1}×(R(H1)∩R(H2)) ⊂ R(F0). Next, taking out the reducible elements,
we get that

Rirr(H ′
1) ∩Rirr(H ′

2) = {1} × {1} × (Rirr(H1) ∩Rirr(H2))

And by the definition of the SO(3) action, it acts component-wise on the product factors, so that
the quotient becomes

R(H ′
1) ∩R(H ′

2) = {1} × {1} × (R(H1) ∩R(H2))

That is to say, they are pointwise equal! Although we may have to perturb both R(H ′
2) and R(H2)

to make the intersections transversal, they can be perturbed so that this intersection result is still
true.

Now assuming that the intersections are transversal, we lastly need to deal with potential sign
issues in the count. Remembering that our definition included a factor of (−1)g, this means we want
to show that the sign count of the points in R(H ′

1)∩R(H ′
2) is the opposite of that of R(H1)∩R(H2).

Fix a point α ∈ R(H1) ∩ R(H2). First we compare the orientations of TαR(M ′
1) ⊕ TαR(M ′

2)
with that of TαR(M1)⊕TαR(M2). However it is that R(Mk) is oriented, the natural orientation of
TαR(M ′

k) is that of su(2)⊕ TαR(Mk). Thus, we get the orientation preserving identification

TαR(H ′
1)⊕ TαR(H ′

2) = su(2)⊕ TαR(M1)⊕ su(2)⊕ TαR(M2)

= (−1)g−1su(2)⊕ su(2)⊕ TαR(M1)⊕ TαR(M2)

The (−1)g−1 term appearing because we pull the su(2) term through dimTαR(M1) = 3g−3 ≡ g−1
(mod 2) terms.

Next, we must compare this orientation of TαR(F ′) with TαR(F ′). These orientations both come
from the orientations of R(F ′

0) and R(F0). These orientations come from a symplectic basis for
the two, and thus the two new elements of homology of H1(F

′
0;Z) are next two each other in the

orientation; that is,
TR(F ′

0) = su(2)⊕ su(2)⊕ TR(F0)

and the same will be true of F ′, F :

TR(F ′) = su(2)⊕ su(2)⊕ TR(F )

The orientation of H1(F
′;Z) is naturally the symplectic basis: but the orientations of H1(Hk;Z)

were by a product. These orientations actually differ: the first looks like R ⊕ R ⊕H1(F ;Z), while
the second looks like R⊕H1(H1;Z)⊕ R⊕H1(H2;Z). These only agree after we pull the second R
through the first homology, picking up a factor of (−1)g when we want to make that replacement.
Putting these together, we get that

TαR(H ′
1)⊕ TαR(H ′

2) = (−1)g−1su(2)⊕ su(2)⊕ TαR(H1)⊕ TαR(H2)

= µ(α)(−1)g−1su(2)⊕ su(2)⊕ TαR(F )

= µ(α)(−1)g−1(−1)gTαR(H1)⊕ TαR(H2)

= −µ(α)TαR(H1)⊕ TαR(H2)

As desired. □

So the Casson invariant is well defined for homology 3 spheres, and we may write it simply as
λ(Σ). Although it is easy, let’s do a simple calculation first.

Example 4. λ(S3) = 0.

Proof. We prove this example twice with two different handlebody decompositions to demonstrate
theorem 8.
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Figure 8. Genus 2 standard Heegaard splitting of S3

(1) S3 has a handlebody decomposition as the union of two genus 0 handles: its northern and
southern hemispheres H1, H2, with intersection S2. All such surfaces are simply connected,
so R(S3) = R(H1) = R(H2) = R(S2) = {θ}. So also Rirr(S3) = Rirr(H1) = Rirr(H2) =
Rirr(S2) = ∅, and the same is true of R. Then R(H1) trivially intersects R(H2) transversely
with intersection empty, so there is nothing to count and

λ(S3) = λ(S3, H1, H2) =
(−1)0

2

∑
x∈∅

(−1)µ(x) = 0

(2) S3 also has a handlebody decomposition formed by the standard embedding of the solid genus
2 handlebody. Call this H1, and the outer one H2 = S3 \ (intH2). Their intersection is the
standard embedding of the genus 2 surface F . Then consider the intersectionR(H1)∩R(H2).
Let’s take a closer look at the fundamental groups involved: considering the loops in figure
8.

The α loops generate π1H1, the β loops generate π1H2, and both together generate π1F .
Inside of π1F , the only relation is the product of commutators, and this is the only relation
between any αi and a βi. If ϕ ∈ R(H1)∩R(H2) then there is a representative ϕ0 ∈ R(H1)∩
R(H2). Then the fact that ϕ0 ∈ R(H1) ⊂ R(F ) means that ϕ0 = ϕ0|H1 =⇒ ϕ0(βi) = 0
for any βi. By mirrored reasoning, ϕ0(αi) = 0, thus actually ϕ0 = θ, a contradiction. Thus
R(H1) ∩R(H2) is again empty and so trivially transverse, and we can conclude as before.

□

As a taste for how this definition feels different from the axiomatic one, we will prove parts 2 and
3 of theorem 6 from the representation counting perspective.

Lemma 10. λ(Σ) = −λ(Σ) and λ(Σ1#Σ2) = λ(Σ1) + λ(Σ2).

Proof. For simplicity’s sake, we prove both cases assuming that Σ is non-degenerate. Also, fix an
orientation of SU(2) without further reference.

(1) Pick a genus g Heegaard splitting Σ = H1 ∪F H2. The orientation of Σ gives an induced
orientation to H1, H2 and F . Then Σ̄ clearly has a Heegaard splittiing consisting of (H̄1)∪F̄

(H̄2). Every point of α ∈ R(Σ) has an associated point (the same point!) in R(Σ̄). Thus it
suffices to prove that µ̄(α) ∼= µ(α) + 1 (mod 2), where µ̄ is the orientation in R(Σ̄) and µ is
the orientation in R(Σ).
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The sign of µ(α) is positive or negative corresponding to whether the orientations of
the spaces TαR(H1) ⊕ TαR(H2) and TαR(F ) agree. Thus, we want to show that if these
orientations do agree, then the orientations of TαR(H̄1) ⊕ TαR(H̄2) and TαR(F̄ ) disagree.
By symmetry, the other case is then the same.

First, we see what happens to the orientations of H1(F ;R), H1(H1;R), and H1(H2;R).
Changing the orientation of F changes the orientation of H1(F ) by a factor of (−1)g. Since
the orientation of H1(H1) is such that the product over the oriented generators is the
fundamental class, changing the orientation of H1 changes the orientation of H1(H1) by a
factor of (−1)g as well. Since we choose the bases so that H1(H1) ⊕ H1(H2) = H1(F ) is
orientation preserving, this means that the orientation of H1(H2) does not change.

Next, we study how the orientation of R changes based on the orientation of H1. The ori-
entation ofR(F ) changes by a factor of (−1)g+1, so we just focus onH1(Hk). R(Mk) inherits
the orientation from SU(2)g/SO(3) induced by the identification of Hom(π1Hk, SU(2)) ∼=
SU(2)g. Changing the orientation of H1(Hk) changes the orientation of Hom(π1Hk, SU(2))
by the same factor, since both correspond to the same generating basis vectors. Thus,
changing the orientation of H1(Hk) by (−1)g changes the orientation of R(Hk) by (−1)g,
and preserving the orientation of one preserves the orientation of the other.

Finally, we can put it all together. The orientation of TαR(−F ) is (−1)g+1 the orientation
of TαR(F ). Since the orientation of H1(−H1) differs by a factor of (−1)g, so does the
orientation of TαR(−H1) does as well. Since the orientation of H1(−H2) does not change,
neither does the orientation of TαR(−H2). All in all, the orientation of TαR(−H1) ⊕
TαR(−H2) differs by a factor of (−1)g, whereas the orientation of TαR(−F ) differs by a
factor of (−1)g+1, so they will always disagree given that the originals agreed. And that
suffices for the proof.

(2) It is certainly true that R(Σ1#Σ2) ∼= R(Σ1)×R(Σ2). Then since R(Σi) = Rirr(Σi) ∪ {θ},

Rirr(Σ1#Σ2) ∪ {θ1, θ2} = (Rirr(Σ1) ∪ θ1)× (Rirr(Σ2) ∪ θ2)

= [Rirr(Σ1)×Rirr(Σ2)] ∪ [θ1 ×Rirr(Σ2)] ∪ [Rirr(Σ1)× θ2] ∪ (θ1, θ2)

Thus

Rirr(Σ1#Σ2) = [Rirr(Σ1)×Rirr(Σ2)] ⊔ [θ1 ×Rirr(Σ2)] ⊔ [Rirr(Σ1)× θ2]

The SO(3) action clearly distributes across the product identifications, so we get

R(Σ1#Σ2) = [R(Σ1)×R(Σ2)] ⊔ [θ1 ×R(Σ2)] ⊔ [R(Σ1)× θ2]

It is clear that the second and third parts of the union give when counted exactly λ(Σ1)
and λ(Σ2), respectively, and that they add. The last thing we need to do is examine
R(Σ1) × R(Σ2). We want to show that the signed count of it is exactly 0. Unfortunately,
this part of R(Σ1#Σ2) is exactly the degenerate part. Elements of R(Σ1) × R(Σ2) are
equivalence classes of products (α, β) with neither α nor β reducible. By its definition, the
conjugation action distributes, so in particular if (α, β0) is conjugate to (α, β) by some g
then actually g = 1. Thus for every α and β, the set {(α, gβg−1) : g ∈ SO(3)} consists of
disjoint conjugacy classes and as a subspace of R(M1#M2) is homeomorphic to a copy of
SO(3) by the obvious map. So the R(Σ1)#R(Σ2) bit consists of (finitely many) disjoint
unions of copies of SO(3).

Since the degenerate parts of our manifold are fortunately submanifolds, we can consider
a special perturbation of the intersection: one that retains the Euler characteristic of the
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submanifold. After such a perturbation, the SO(3) copies break into 0-dimensional compo-
nents who Euler characteristics must sum (still counting sign) to χ(SO(3)) = 0. The euler
characteristic of a point is just 1, so in fact this is the same as saying that the signed count
of the points in R(Σ1) × R(Σ2), after the perturbation, is just the sum over all the Euler
characteristics of the SO(3) copies, which is 0. Thus this part contributes nothing to the
sum, and our addition formula is complete.

For more information about this kind of degeneracy, called Morse-Bott nondegeneracy,
see [8].

□

In our proof of example 4, it is clear that we got ‘lucky’ because the generators in the handlebody
decomposition of S3 did not interact with each other. the computation for the Poincare homology
sphere Σ(2, 3, 5) is more difficult and warrants study.

Example 5. λ(Σ(2, 3, 5)) = −1.

Proof. First, we figure out what R(Σ(2, 3, 5)) looks like. Then we examine transversality so that we
can count the points without perturbations. Last, we find the orientations.

π1Σ(2, 3, 5) has the presentation

π1(Σ(2, 3, 5)) = ⟨x1, x2, x3, h|[h, xk] = 1, x2
1 = h, x3

2 = h−1, x5
3 = h−1, x1x2x3 = 1⟩

Let α be a representation with α(h) ̸= ±1. Then it lies inside of a unique U(1). Since h ∈ Z(π1), all
other elements would also have to be inside of that U(1), thus the whole representation is reducible.

Now assume that α(h) = 1. Then α(x1)
2 = 1 =⇒ α(x1) = ±1. But then α(x2) = ±α(x3)

−1,
and so in particular they commute with each other. But then every element commutes with every
other element, so the representation is reducible.

Now assume that α(h) = −1. Then α(x1)
2 = −1, so after composing with some conjugation,

α(x1) = ±i. Both of these choices are conjugate to each-other by the matrix

(
0 1
−1 0

)
(In general,

eiθ is conjugate to e−iθ by this matrix).
Similarly, the power condition says that α(x2) and α(x3) will be in the conjugacy classes of

primitive 3rd, 5th roots of −1, respectively, with positive imaginary part. But there is only one such
option for x2, and two such options for x3. Thus, the conjugacy class of α(x1), α(x2) are fixed, and
there at most two choices for conjugacy classes of α(x3). One can manually check that this means
that there are at most 2 elements of R(Σ(2, 3, 5)).

Using MatLab, we realize these both of these representations by picking:

α(x1) =

(
i 0
0 −i

)
, α(x2) =

(
1
2 − cos( 2π5 )i cos(π5 )
− cos(π5 )

1
2 + cos( 2π5 )i

)
, α(x3) =

(
cos(π5 )

1
2 + cos( 2π5 )i

− 1
2 + cos( 2π5 )i cos(π5 )

)
And

α(x1) =

(
i 0
0 −i

)
, α(x2) =

(
1
2 − cos(π5 )i cos( 2π5 )
− cos( 2π5 ) 1

2 + cos(π5 )i

)
, α(x3) =

(
cos(π5 )−

1
2 i − cos( 2π5 )i

cos( 2π5 ) 1
2 + cos( 2π5 )i

)
These two representations satisfy the required relations that α(x1)

2 = α(x2)
3 = α(x3)

5 = −1, and
α(x1)α(x2)α(x3) = 1. They can be shown to not be conjugate to each-other by the following reason:
suppose they were. Then since α(x1) = i in both cases, the element which conjugates them must (as a

quaternion) have no j or k components, and so is of the form

(
eiθ 1
e−iθ 0

)
. But it is clear that no such

elements conjugate α(x2) and α(x3) in the required manner. Thus, Rirr(Σ(2, 3, 5)) consists of two
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conjugacy classes, and R(Σ(2, 3, 5)) = Rirr(Σ(2, 3, 5))/SO(3) (modding out by exactly conjugation)
consists of 2 points.

Next, we want to make sure that these two points actually intersect transversely. By lemma 8, we can
do this without reference to the handlebody decomposition—just by looking atH1

α(π1Σ(2, 3, 5); su(2)).
Fix one of the above irreducible representations α. Let ζ : π1Σ(2, 3, 5) → su(2) be a cocycle, so that
ζ(xy) = ζ(x) + Adα(x)(y). First off, since h is in the center of π1Σ(2, 3, 5), for any g ∈ π1Σ(2, 3, 5),

ζ(h) + ζ(g) = ζ(h) + Adα(h) ζ(g) = ζ(hg) = ζ(gh) = ζ(g) + Adα(g) ζ(h)

=⇒ Adα(g) ζ(h) = ζ(h)

For all g. But since α is irreducible, the only point which is fixed under every adjoint action is 0, so
ζ(h) = 0. The relations x2

1 = x3
2 = x5

3 = h then give rise to the requirements

(1 + Adα(x1))ζ(x1) = 0

(1 + Adα(x2) +Ad2α(x2))ζ(x2) = 0

(1 + Adα(x3) +Ad2α(x3) +Ad3α(x3) +Ad4α(x3))ζ(x3) = 0

As well as x1x2x3 = 1 giving the requirement

0 = ζ(x1x2x3) = ζ(x1) + Adα(x1) ζ(x2) + Adα(x1) Adα(x2) ζ(x3)

Each of these equations we can consider as operators on su(2) which give linear constraints on
the choices of ζ(xk). Initially, we had R3 choices for each ζ(xk) (R9 total): each of the first three
conditions is a requirement that ζ(zk) is in the kernel of the relevant operator, which can be calculated
to be 2 dimensional. Thus we get 1 constraint from each of the first 3 equations. The last equation
can also be viewed as an operator from the set of (thus far valid) choices of ζ(xk) into R3. Since α
is irreducible, this operator must be surjective and thus we get an R3 of constraints from this. Thus
the dimension of the cocycles is 9− 3− 3 = 3.

The coboundaries are the combined span of Image(1−Adα(g)) ranging over all g ∈ π1(Σ(2, 3, 5)).

Since the α are irreducible, these combined spans must be all of R3: if they were not, then there
would be some nontrivial kernel and thus element x ∈ su(2) which was fixed by every Adα(g),
violating irreducibility. Thus the space of coboundaries is 3 dimensional. So the cohomology is
Z1
α(π1Σ(2, 3, 5); su(2))/B

1
α(π1Σ(2, 3, 5); su(2)) = R3/R3 = 0. Thus by lemma 8, the intersections are

transversal.

Lastly, we discuss orientations, following [6] In fact, at both points α, the intersection gives a sign
of −1. In order to do this, we need an explicit Heegaard splitting. An exercise in Kirby calculus
shows that surgery on the LHS of figure 9 also gives Σ(2, 3, 5), and the RHS demonstrates a genus
2 Heegaard splitting of the homology sphere. The handlebody which is formed from the −2 and 3
surgeries as depicted is H1, and the compliment is H2.

The orientations of the representation spaces start by orienting the homologies of the handlebod-
ies, which starts with the fundamental group of the boundary surface F , which is symplectically
oriented by the curves (m1, l1,m2, l2). The orientation of the handlebodies should be thought of
with respect to their inclusions of H1(F ;Z) into them, i.e., thought of in terms of the generators
mk, lk. After finding this, one finds local parameterizations of the two spaces R(H1),R(H2) around
each point α and compare them to a parameterization of R(F ). Lescop calculates in [6] that the
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Figure 9. A genus 2 Heegaard splitting of Σ(2, 3, 5)

determinant of the diffeomorphism going between them is -1 regardless of α, and so each point
contributes a −1. Thus we have proven λ(Σ(2, 3, 5)) = 1

2 (−1− 1) = −1. □

Corollary. The Casson invariant is not completely determined by the fundamental group.

Proof. By Van Kampen’s theorem, it is easy to see that Σ(2, 3, 5)#Σ(2, 3, 5) and Σ(2, 3, 5)#Σ(2, 3, 5)
have the same fundamental group. But

λ(Σ(2, 3, 5)#Σ(2, 3, 5)) = 2λ(Σ(2, 3, 5)) = −2

̸= 0 = λ(Σ(2, 3, 5))− λ(Σ(2, 3, 5))

= λ(Σ(2, 3, 5)#Σ(2, 3, 5))

where we used Theorem 6. □

Thus the Casson invariant, despite its initial definition as counting representations of the funda-
mental group, actually ends up containing slightly different information, the differences being mostly
related to orientation.

3.3. Applications: property P. Before the Poincare conjecture was proven, one potential method
of finding a counterexample was to simply apply Dehn surgery on a knot in S3 and hope that (a)
the fundamental group of the resulting 3 manifold was trivial, and (b) that some other 3 manifold
invariant was nontrivial. A knot is said to have property P if no surgery on it could possibly give such
a counter-example, i.e., that no nontrivial surgery on the knot results in a manifold with nontrivial
fundamental group. The statement of property P is every knot except the unknot has property P.
Kronheimer and Mrowka proved this in general in 2003 in [5]; the tools of the Casson invariant do
not get us all the way to the proof, but they make significant progress.

It has been known for some time that a nontrivial surgery on a nontrivial knot never itself gives
S3 back, so another way of proving property P would be to prove the Poincare conjecture. Perelman
proved the Poincare conjecture in 2003, in fact before Kronheimer and Mrowka’s paper.

Theorem 9. Let k be a knot. If there exists some nontrivial p, q such that p/q surgery along k on
S3 has π1(S

3 + p/q · k) = 0, then ∆′′
k(1) = 0.

Proof. First, we remember that 1/0 surgery is the identity and so is trivial. We now assume that
q ̸= 0. If p ̸= 1, then the resulting manifold will have homology Z/pZ (by Mayer Vietoris) so will
have a nontrivial fundamental group. Thus we can also assume that p = 1. The remaining cases are
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all of the form 1/q. Then by our computation of the Casson invariant with q ̸= 0 and ∆′′
k(1) ̸= 0,

we know that

λ(S3 +
1

q
· k) = q

2
∆′′

k(1) ̸= 0

Since a nontrivial Casson invariant implies a nontrivial homomorphism of the fundamental group
into SU(2), it must be in particular that the fundamental group is non-trivial, which suffices for the
proof. □

4. Combinatorics

The Casson-Walker invariant, a generalization of the Casson invariant, serves two functions.
Firstly, it extends the Casson invariant from an invariant of integer homology 3 spheres to one of
rational homology 3 spheres, opening up the properties of the invariant to a much larger class of
manifolds; of particular relevance is Dehn surgery with coefficients other than 1

q .

The invariant may be defined in two different ways, both shown by Walker in [12]. The first is
a construction similar to the SU(2) representation definition of the Casson invariant. We will not
go over the details of this, but the main innovation is a way to count the reducible representations,
which now make some real contribution. The second definition is purely combinatorial. Unlike
the axiomatic definition of the Casson invariant, this definition actually establishes existence of the
invariant, and retroactively the existence of the Casson invariant as well, using purely combinatorial
means. A disadvantage of the combinatorial definition is that it lacks an immediate topological
interpretation which the first one gives.

Definition. Let ((·)) : R → R be the sawtooth function

((x)) =
{x− ⌊x⌋ − 1/2 x ∈ R \ Z

1
2 x ∈ Z

Then define the Dedekind sum s : Z× (Z \ 0) → R by

s(q, p) = sign(p) ·
|p|∑
k=1

((
k

p

))((
kq

p

))
Let ⟨·, ·⟩ be the bilinear form on H1(T 2;Z) defined by Poincare duality. In the case of the torus,

we remark that in particular this form is alternating and in a suitable basis is of the form(
0 1
−1 0

)
Definition. Let a, b, l ∈ H1(T

2;Z) so that a and b are represented by simple closed curves and
⟨a, l⟩, ⟨b, l⟩ ≠ 0. Then choose a basis x, y ∈ H1(T

2;Z) so that l = dy for some d ∈ Z and ⟨x, y⟩ = 1.
Then define

τ(a, b; l) = −s(⟨x, a⟩, ⟨y, a⟩) + s(⟨x, b⟩, ⟨y, b⟩) + d2 − 1

12

⟨a, b⟩
⟨a, l⟩⟨b, l⟩

This definition is independent of the choice of x, y; this can be verified by picking a new basis,
expanding it out in terms of the old one, and using a couple identities related to s.

Definition. The Casson Walker invariant is an invariant λW of oriented rational homology spheres
with the following combinatorial description:

(1) λW (S3) = 0.
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(2) If k ⊂ Σ is a knot in a rational homology sphere, l is a longitude of E(k), a, b ∈ H1(∂E(k);Z)
are primitive, and ⟨a, l⟩, ⟨b, l⟩ ≠ 0, then

λW (Σ + b · k) = λW (Σ + a · k) + τ(a, b; l) +
1

2

⟨a, b⟩
⟨a, l⟩⟨b, l⟩

∆′′
k⊂Σ(1)

For this to be a well defined invariant, we must show two things: (1) that every rational homology
sphere can be described by a sequence of surgeries satisfying the above restrictions, and (2) that out
of every such sequence arises the same number. We will do this at the end, but first we shall get
some practice in computing it.

Theorem 10. Let k be a knot in an integral homology sphere Σ. Then for q, p ̸= 0, λW (Σ+ p
q ·k) =

λW (Σ)− s(q, p)/2 + q
2p∆

′′
k(1).

Proof. Since q, p ̸= 0, the resulting surgery is indeed a rational homology sphere. Let E(k) be the
knot exterior as usual, and identify N(k) with D2 × S1. Now, let m be the meridian and l the
longitude of ∂E(k), such that m generates H1(E(k)) and vanishes in H1(E(k)), while l generates
H1(E(k)) and vanishes in H1(E(k)). Orient m, l so that ⟨m, l⟩ = 1.

Then we can set a = pm + ql, b = m. These are both primitive because (p, q) is coprime. The
p/q surgery is defined by sending ∂D2 × {0} to a, b, respectively.

Since q ̸= 0, we know that ⟨a, l⟩ = p, ⟨b, l⟩ = 1; neither of these are 0, so a, b, l satisfies the surgery
formula conditions. We can now pick a basis x, y by setting x = m+ l, y = l. We get that y = 1 · l
so that d = 1, and that ⟨x, y⟩ = 1. Thus

τ(a, b; l) = −s(⟨x, a⟩, ⟨y, a⟩) + s(⟨x, b⟩, ⟨y, b⟩) + d2 − 1

12

⟨a, b⟩
⟨a, l⟩⟨b, l⟩

= −s(⟨m+ l, pm+ ql⟩, ⟨l, pm+ ql⟩) + s(⟨m+ l,m⟩, ⟨l,m⟩)
= −s(q − p,−p) + s(−1,−1)

Since s(−1,−1) = 0, and s(q − p,−p) = −s(q, p), we get that τ(a, b; l) = s(q, p). Now notice that
Kb = Σ, since it is 1/0 surgery. Thus we have that

λW (Kb) = λW (Ka) +
1

2
τ(a, b; l) +

⟨a, b⟩
⟨a, l⟩⟨b, l⟩

1

2
∆′′

k(1) =
s(q, p)

2
− q

2p
∆′′

k(1)

=⇒ λW (Σ +
p

q
· k) = λW (Σ)− 1

2
s(q, p) +

q

2p
∆′′

k(1)

□

Remark. In particular, since lens spaces L(p, q) are made by doing −p/q surgery on the unknot in
S3, this tells us that λW (L(p, q)) = −s(q, p)/2.

Corollary. If Σ is an integer homology sphere, then λ(Σ) = λW (Σ).

Proof. By lemma 2, every homology sphere can be obtained by a sequence of integer surgeries on
knots with coefficients ±1, with each intermediate surgery a homology sphere (and starting with S3).
By definition, λW (S3) = λ(S3) = 0. Thus it suffices by induction to prove that if λ(Σ) = λW (Σ),
then λ(Σ± k) = λW (Σ± k). By the above theorem,

λW (Σ± k) = λW (Σ)− 1

2
s(±1, 1) +

±1

2(1)
∆′′

k(1)

= λ(Σ)± 1

2
∆′′

k(1) = λ(Σ± k)



THE MANY FACES OF THE CASSON INVARIANT 25

Where we use the easy calculation that s(±1, 1) = 0. □

Now we should actually prove existence.

Definition. A permissible surgery sequence (PSS), denoted N , of length n is, for each 1 ≤ i ≤ n,
the following data: a (closed) rational homology sphere N i, a knot ki ⊂ N i, and two primitive
elements mi, si ∈ H1(E(k);Z) such that N i

mi
∼= N i and N i

si
∼= N i+1 (for i < n). Furthermore,

N1 ∼= S3. We say that N represents Nn. For each i, we let li be the canonical longitude of ki.

For a PSS N , we say that

λ(N ) :=

n∑
i=1

(
τ(mi, si; li) +

1

2

⟨mi, si⟩
⟨mi, li⟩⟨si, li⟩

∆′′
ki⊂Ni(1)

)
Then the existence of the Casson-Walker invariant becomes the statement that every rational ho-
mology sphere is represented by some PSS, and that any two PSS’s that represent the same rational
homology sphere have the same invariant λ(N ).

By viewing each knot as living in the original S3, each PSS gives rise to a framed link L, along
with an ordering of the links components (ki)i. Such links are called ordered framed links (OFLs).
If the framing of each component is an integer, they are called integral OFLs.

Theorem 11. Every rational homology sphere can be reached by a sequence of such surgeries.

Proof. This is a corollary of lemma 4: pick some sequence of knots ki, link L, and partial links Li as
in the lemma. Let N i be the surgery on Li−1, and the primitive elements mi, si be those represented
by 1/0 surgery and ni surgery, respectively. Then by the lemma, each N i is a rational homology
sphere and Nn is surgery on L; and we are done. □

Remark. In the language of OFLs, this tells us that every rational homology sphere is given by
surgery on an integral OFL L, such that the link Lk−1 is also a rational homology sphere. Call
such integral OFLs permissible. Then we can rephrase the theorem as stating that every rational
homology sphere is represented by an integral, permissible OFL.

We can then also go the other way, saying that a PSS is integral if its corresponding OFL is
integral.

Theorem 12. Any two permissible, integral surgery sequences leading to the same rational homology
sphere give the same value of λW .

Proof. A slight variation of Kirby’s theorem gives that any two permissible, integral OFLs are related
by a sequence of four moves:

(1) isotopy of the link.
(2) Add or remove an unlinked ±1 unknot anywhere within the sequence, as in the first Kirby

move.
(3) slide ki over kj for i > j as in the second Kirby move.
(4) Swap the ordering of ki, ki+1, as long as the result still gives a PSS.

One then needs to show that the Casson-Walker invariant does not change when applying any of the
above moves. Isotopy is clear: none of the values of the homology classes or surgered results change.
Next, we consider the first Kirby move. On the OFL side, we are slotting in a ±1 unlinked unknot
k in between positions i and i + 1. The actual sign doesn’t matter, so let’s assume its +1 surgery.
Surgery on this does not change the manifold, so the resulting sequence is still a permissible, integral
OFL. The +1 surgery sends the meridian m to m+ l, with longitude l. Thus in the language of the
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definition of the surgery formula, a = m, b = m+l, and we can check that ⟨a, l⟩ = ⟨m, l⟩ = 1 ̸= 0 and
similarly with ⟨b, l⟩. Since the manifold does not change before or after the surgery, the contribution
of each other component of the PSS does not change in the calculation of λ. The contribution of
this component is

τ(m,m+ l; l) +
1

2

⟨m,m+ l⟩
⟨m, l⟩⟨m+ l, l⟩

∆′′
k⊂Ni(1)

The first term is 0 by calculating out τ : indeed, we get that the d in the definition of τ is just 1,
and the Dedekind functions vanish by basic properties thereof. The second term is also 0 because,
being an unknot in N i, its Alexander polynomial is trivial.

The second Kirby move may appear to change PSS at first. However, because we are sliding the
knot ki over kj for i > j, there is no effect on the surgered spheres for k ≤ i, as the only knot
which changes is ki. Then by the definition of the handle slide, after the surgery by kj , the image
of the post-slide knot k′i becomes identical to the pre-slide knot ki. Thus the actual PSS does not
change except by an isotopy, with no changes to the knots, closed curves, or surgered manifolds in
the sequence.

The proof of invariance under the final move can be found in [12]. The main idea is just to
carefully compute how the Alexander polynomial changes under the surgery. If it is the ki and ki+1

knots which have their orders exchanged, then we can consider the manifold E which is the combined
knot exterior of both ki and ki+1. Then there is an inclusion i∗ : H1(∂E(ki);Q) → H1(E;Q). The
generator of H1(∂E(ki);Q) which is also a generator of H1(E(ki);Q) does not vanish, so the map
is at least rank 1. Whether it is an isomorphism depends on the image of the generator which is
null-homologous in H1(E(ki);Q), but potentially not null-homologous in H1(E;Q). Then the proof
of the result relies on carefully examining the effect on the Alexander polynomial under the two cases
of i∗ being rank one or an isomorphism. It is complicated by the fact that the rational homology
sphere definition of the Alexander polynomial must be used, which is harder to compute than the
analogous definition for integral homology spheres.

□

4.1. Applications: cosmetic surgery. Cosmetic surgery is a problem asking how unique Dehn
surgery is. Ideally, we would like Dehn surgery to be as close to a 1-to-1 description of closed 3
manifolds as possible, so uniqueness of Dehn surgery would be a striking result. Kirby calculus
answers the question of when surgery on two different knots or links gives the same manifold. A
different direction is to ask when Dehn surgery on the same knot with two different coefficients
can give the same manifold. For the unknot, this can indeed happen, but conjecturally this cannot
happen with any other knots. This is called the cosmetic surgery conjecture. It comes in two flavors:

Conjecture 1 (Purely cosmetic surgery). Let k ⊂ S3 be a non-trivial knot. Then if r, s are two
surgery coefficients and S3 + r · k is orientation preserving homeomorphic to S3 + s · k, then r = s.

Conjecture 2 (Chirally cosmetic surgery). Let k ⊂ S3 be a knot which is not isotopic to its mirror
image, and is not a (2, n)-torus knot. Then if r, s are two surgery coefficients and S3 + r · k is
orientation reversing homeomorphic to S3 + s · k, in fact r = s.

There has been much progress related to these two conjectures, mostly of the form of obstructions
to admitting such cosmetic surgeries. The Casson-Walker invariant allows us to give some such
obstructions.

Theorem 13. Let k be a knot, and let m ̸= n ∈ Z. If p/q surgery and p/q′ surgery on k result in
orientation preserving diffeomorphic manifolds, then (q − q′)∆′′

k(1) = p(s(q, p)− s(q′, p′)).
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Proof. We may assume that q ̸= q′ and q′, q ̸= 0. By the surgery formula,

λW (S3 +
p

q
· k) = λW (S3 +

p

q′
· k) =⇒ −1

2
s(q, p) +

q

2p
·∆′′

k(1) = −1

2
s(q′, p) +

q′

2p
·∆′′

k(1)

=⇒ (q − q′)∆′′
k(1) = p(s(q, p)− s(q′, p))

□

Corollary. If k admits purely cosmetic integer surgery via the pair ±m, then ∆′′
k(1) =

(m−1)(m−2)
12 .

Proof. In this case, q = 1, q′ = −1, and p = m, Then s(q, p)−s(q′, p) = s(1,m)−s(−1,m) = 2s(1,m),
and an explicit formula for s(1,m) concludes. □

Remark. If k is instead a null-homologous knot in a rational homology sphere Σ (such that Dehn-
surgery by coefficients still makes sense), then the above proof carries out verbatim, since the only
extra term added is a ∆W (Σ) term on both sides, which cancels.

Since q = q′ (mod p) implies that s(q, p) = s(q′, p), this gives us a plethora of new values where
∆′′

k(1) must vanish. It turns out that for p prime, s(q, p) = s(q′, p) iff q = q′ (mod p) or qq′ = 1
(mod p).

Theorem 14 ([11]). If there is a chirally cosmetic surgery p/q, p/q′ with p, q, q′ ̸= 0 on a knot k,
then

(q + q′)∆′′
k(1) = p(s(q′, p) + s(q, p))

Proof. If they are orientation reversing homeomorphic, then

λW (S3 +
p

q
· k) = −λW (S3 +

p

q′
· k)

=⇒ −1

2
s(q, p) +

q

2p
∆′′

k(1) = −(−1

2
s(q′, p) +

q′

2p
∆′′

k(1))

=⇒ (q + q′)∆′′
k(1) = p(s(q′, p) + s(q, p))

□

We can extract more information on ∆k by performing topological operations on the knot. The
general idea is as follows: many processes that alter 3 manifolds in proscribed ways cooperate nicely
with surgery. In particular, if Σ → Σ′ is some process, and Σ = Σ0 + n · k, then we hope that the
process ’preserves’ this surgery description, in the sense that Σ′ = Σ′

0 + n′ · k′, for k′ a new knot.
In the most favorable cases, k′ is related, but not identical to, k. Thus, we can extract information
about k and Σ by looking at the properties of k′. Let’s look at this more specifically.

The specific case we will cover is that of double coverings. If Σ = S3±2 ·k, then H1(Σ;Z) ∼= Z/2.
Thus the commutator [π1Σ, π1Σ] ⊂ π1Σ is index 2, and this gives rise to a double covering Σ̃ over
Σ by covering space theory. While it doesn’t make sense to create an index 2 cover of S3, we can
create a branched cover of S3 over k.

Since H1(E(k);Z) ∼= Z, fundamental group π1 has a unique index 2 subgroup containing the

commutator group; call this subgroup H ⊂ π1; thus there is a unique index 2 covering space Ẽ(k).
It is in particular finite index and is thus also a compact 3 manifold with boundary. Said boundary
must be homeomorphic to S1 × S1 because the boundary is itself a two sheeted covering space for
the boundary ∂E(k) ∼= S1 × S1, and an two sheeted covering space of a torus is a torus. There
is a unique way to glue in a D2 × S1 such that the result extends the cover to a branched cover
p : X → S3. The branching set of the cover are k ⊂ S3 the way this can be thought of is that the
knot exterior can be as thin as we want it to be (creating an honest covering space no matter how
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thin), so the eventual branched cover should only be branched at k itself. Then k̃ := p−1(k), the
branching set in X, is also a null homologous knot, and the result becomes:

Lemma 11 ([1], [3]). In the notation of above (Σ = S3 ± 2k), Σ̃ = X ± k̃. Furthermore, ∆k̃(t) =

∆k(t
1/2)∆k(t

−1/2).

Theorem 15. Suppose k ⊂ S3 has a Seifert surface with genus 2, and suppose that k admits a ±2
cosmetic surgery. Then ∆k(t) = 1 identically.

Proof. If F is a genus 2 Seifert surface for k, then the corresponding Seifert matrix is 4× 4, which
means the Alexander polynomial has non-zero coefficients of degrees at most t2. By symmetry of
the Alexander polynomial of a knot, we can write ∆k(t) as

∆k(t) = at2 + bt+ c+ bt−1 + at−2

Since k admits a ±2 cosmetic surgery, by corollary 4.1, ∆′′
k(1) = 0. By the above lemma, k̃ admits

a ±1 cosmetic surgery, and so we similarly get ∆′′
k̃
(1) = 0 by the remark after 4.1. Writing out the

Alexander polynomial for ∆k̃(t) based on the above lemma, we have

∆k̃(t)∆k(t
1/2)∆k(t

−1/2) = a2t2 + (2ac− b2)t+ (2a2 − 2b2 + c2) + (2ac− b2)t−1 + a2t−2

Thus we have the two relations:

0 = ∆′′
k(1) = [2a+ 2bt−3 + 6at−4]|t=1 = 2a+ 2b+ 6a =⇒ b = −4a

0 = ∆′′
k̃
(1) = 2(a2) + 2(2ac− b2) + 6(a2) =⇒ 4a2 + 2ac = b2

Putting these together gives us

4a2 + 2ac = 16a2 =⇒ a(12a− c) = 0

Thus a = 0 or 12a = c. For the last restriction, we remember that |∆k(1)| = 1, so that

2a+ 2(−4a) + c = ±1 =⇒ c = 6a± 1

Thus it must be that a = b = 0, and so ∆k(t) = ±1, which up to normalization is just ∆k(t) = 1.
□

Remark. The above theorem has more relevance than it seems. It turns out that all non-trivial
knots with ±2 purely cosmetic surgery have genus 2 Seifert surfaces. In fact, [1] proves that all
non-trivial knots with cosmetic surgery must have surgeries of the form ±2, so in fact every knot
with cosmetic surgery has trivial Alexander polynomial.

5. Gauge theory

When constructing the Casson invariant, it may seem as if we are throwing away a certain amount
of information. For example, in the case of Σ(2, 3, 5), no pertubation was needed to get Rirr(H1),
Rirr(H2) into general position, so perhaps there is a way to retain not just the signed count of the
points, but to relate the points to each-other in a well defined way. Because in some manifolds a
pertubation is needed, the signed count was the most we could do.

Gauge theory provides an equivalent way of investigating the structure of Hom(π1Σ, SU(2))/SO(3)
which preserves more of its details. Although this Instanton Floer Homology is too much to discuss
in detail, we can at least see the beginnings of the tools and its power.

Let M be a 3 manifold, and let P = M × SU(2). The projection π : M × SU(2) → M makes
P into a fiber bundle over M . There is more structure here: there is a natural group action
SU(2) × P → SU(2) given by g · (x, h) = (x, hg) (this is called a principle bundle). As with many
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fiber bundles, we are concerned with the lifting of paths. Let γ : [0, 1] → M , and pick a specific
point (γ(0), y) ∈ π−1(γ(0)). Then we may ask for a lift γ̃ making the following diagram commute:

P

[0, 1] M

π
γ̃

γ

and such that γ̃(0) = (γ(0), y). Consider the collection of functions which take in a path and an
initial lift, and output a full lift. Firstly, there is the obvious ‘trivial’ lift: γ̃(t) = (γ(t), y). But there
are many more. To restrict the options, we require that these functions vary smoothly and respect
the group action, in a sense that will be made precise. It turns out that these types of functions
appear naturally as a consequence of the notion of connections.

Definition. Let Ωk(M ; su(2)) = Γ(
∧k

(T ∗M) ⊗ su(2)) be the space of global sections of the kth
exterior power of the cotangent bundle with coefficients in su(2). A := Ω1(M ; su(2)) is called the
space of connections, and the elements of A are connections.

A connection A is thus a smoothly varying collection of linear maps Ap : TpM → su(2). We can
extend A to be defined over P and take in any element (v, u) of T (M × SU(2)) ∼= TM × su(2) by
the rule

A(p,g)(v, u) = Adg−1 Ap(v)

This definition has the property that for any g, h ∈ SU(2),

Adh A(p,gh) = Adh Adh−1g−1 Ap = Adhh−1 Adg−1 Ap = A(p,g)

Connections are the answer to our path lifting criteria. Given a connection A, we can require all
lifts γ̃ of γ to satisfy Aγ̃(t)(γ̃

′(t)) = 0 for all t. In fact, given a connection A, there always exists
such a lift and it is unique, by existence and uniqueness of ODE’s. So we can make the following
definition:

Definition. The holonomy of A is the map

holA : γ 7→ γ̃(1)

Which inputs a path γ : [0, 1] → M with base-point x, and whose output concerns the unique lift of
γ along A, outputting in SU(2).

holA is a morphism of groupoids ΩM → SU(2), where ΩM (not to be confused with ΩkM) is
the loop space of A at the point x. The image of this morphism is called the holonomy group of A.

Definition. A connection is called flat if, for any loops γ, η in M which are based homotopic,
holA(γ) = holA(η).

Given a flat connection and some choice of basepoint, holA thus defines a representation π1M →
SU(2). If F ⊂ A is the space of flat connections, the map A 7→ holA so gives a map F →
Hom(π1M,SU(2)) = R(M). This space is at the very least non-empty: the ‘trivial’ connection θ,
which lifts the paths according to the trivial lift. Now one may start to see where we are going.

Theorem 16. There is a bijective correspondence F ↭ R(M).

Proof. We already have a map hol going one way. To go the other, we follow Floer in [2]. π1M acts

on the universal cover M̃ , and given a representation ϕ ∈ R(M), the action extends to an action
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on M̃ × C2. π1 acts on the first factor via deck transformations, and on the second factor via its
representation into SU(2), which then acts on C2 in the usual way.

The quotient of this action, (M̃ ×C2)/π1M , is an SU(2) bundle over M . Since all SU(2) bundles
over a 3 manifold are trivial (the classifying space BSU(2) is 3-connected), this bundle is a product

M × SU(2), with an inherited connection from the trivial connection on M̃ × C2 (defined for this
product just as it is defined for M above). These can be checked to be inverses, and thus in fact the
correspondence between R(M) and F is a bijection. □

Next, we establish the equivalents of the SO(3) action on R(M).

Definition. The Gauge group G of M × SU(2) is the group of principal bundle automorphisms of
M × SU(2) (i.e., fiber preserving homeomorphisms which are invariant under the group action).

By the SU(2) invariance, any such automorphism of M×SU(2) is exactly determined by where it
sends (M, 1). Thus we can identify G with C∞(M,SU(2)) when needed. In particular, the exterior
derivative of g ∈ G is an su(2)-valued 1-form. Then G acts on A by

g ·A = g−1dg + g−1Ag

It can be checked that g · A satisfies the same invariance properties as the original connection;
in particular, if A is flat, then so is g · A. The action of G on A corresponds to the action of
SU(2) on R(M), which can be checked by looking at how G affects holonomy. Specifically, we
can identify the stab(A) with the centralizer of the holonomy group in SU(2). We say that a
connection is irreducible if stab(A) = {±1} = Z(SU(2)). If A is flat, then irreducibility of A is
exactly surjectivity of holA ∈ R(M) because the nontrivial subgroups of SU(2) are abelian. This
gives a correspondence also between flat, irreducible connections (:= F ∗) and elements of Rirr(M).
We can form the quotient R∗ := F ∗/G , which corresponds to R(M). To summarize:

Theorem 17. There is a correspondence of the following form:

R(M) ↭ F
Rirr(M) ↭ F ∗

R(M) ↭ R∗

As well as Hom(π1M,SU(2))/SO(3) ↭ R := F/G .

The spaces R, R∗ live inside of the larger spaces B := A /G and B∗, the subset of B formed by
the orbits of irreducible connections. This latter space is an infinite dimensional Banach manifold,
and this is the extra structure which we may use to gain more information about R(M).

Remark. Recall that in section 3.1, we found out that the transversality of R(H1)∩R(H2) was actu-
ally a property of Σ itself, not a particular decomposition, and that this gave us a convenient way to
discuss degenerate versus nondegenerate homology three spheres. In the spirit of the correspondence
theorem, we extend this without any more mention to R∗.

5.1. Spectral flow. A 1-form still has a notion of wedge product, even when it has su(2) coefficients:
we just need to specify how the wedge acts on the coefficients. In this case, it is easy since we can
use the lie bracket. For example, in local coordinates we may have((

i 0
0 −i

)
dx

)
∧
((

0 1
−1 0

)
dy

)
=

(
0 2i
2i 0

)
dx ∧ dy

Similarly, the differential d : Ωk(M ; su(2)) → Ωk+1(M ; su(2)) is defined by ignoring the su(2) com-
ponent of the tensor entirely and acting only on the underlying form.
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Definition. For a connection A ∈ Ω1(M ; su(2)) The covariant derivative is a linear map Ωk(M ; su(2)) →
Ωk+1(M ; su(2)) defined by

dAu = du+A ∧ u− u ∧A

Now choose a Riemannian metric on M . Hodge theory and the Hodge star operator ⋆ tells us
that the dual operator d∗A = − ⋆ dA⋆ is an adjoint to dA.

Definition. For A a connection, define the linear operator

KA : (Ω0 ⊕ Ω1)(M ; su(2)) → (Ω0 ⊕ Ω1)(M ; su(2))

by the block matrix (
0 d∗A
dA ⋆dA

)
The association A 7→ KA is continuous; this can be checked just by tracing through the definitions.

Theorem 18 (Lemma 2.4 of [10]). On the L2 completion of Ω0 ⊕ Ω1 to the appropriate Hilbert
space, KA is a(n unbounded) self adjoint Fredholm operator. In particular, it has a discrete, real
spectrum σ(KA) ⊂ R with finite multiplicity at each eigenvalue.

The hope would be to assign to each A ∈ R∗ a number µ which counted the number of points on
the spectrum. Since the operators KA are unbounded, though, the spectrum may be infinite and
we cannot count them directly. Instead, we could try to compare the spectrums, and find a relative
difference of sorts. To this end, we define spectral flow.

Spectral flow has its roots in functional analysis. An elegant, functional analytic definition of
spectral flow can be found in [7]. We will here give a different, non-rigorous definition which can
be made rigorous. Given a curve γ : [0, 1] → A , t 7→ At, we get an associated curve of operators
KAt

by continuity. This then facilitates a continuous change in the spectrums σ(KAt
) as well. By

specifying a given point p ∈ σ(KA0
), we get a curve that links p to some other point in σ(KA1

).
We can then measure how many of the eigenvalues (with multiplicity) change from negative to

positive over the course of this path, and define sf(A0, A1) to be the number of sign changes of the
spectrum of KAt

from negative to positive for any generic path γ : t 7→ At.
Slightly more formally: let Γ = {(t, y)|y ∈ σ(KAt

)} be the graph of the spectrums over t. Since
the spectrums are discrete, we can pick a δ > 0 such that there is no p ∈ (σ(KA0

) ∪ σ(KA1
)) ∩

([−δ, δ] \ {0}). Then for each p ∈ σ(KA0) (counting multiplicity), the ‘continuous path’ of spectra
gives rise to an actual continuous path starting at p (the restriction of the spectral flow to the specific
value p), and we can count the signed intersection number of this curve with the line from (−δ, 0) to
(1, δ), see figure 10. This intersection number is either −1, 0, or 1. Then we can add this intersection
number across all points p to get the spectral flow: we label this sf(A0, A1).

We summarize the key facts about spectral flow in the following lemma:

Lemma 12 (Lemma 2.5, 2.6 of [10]). For two connections A,B, the spectral flow sf(A,B) is always
finite. It depends on the choice of curve connecting A and B only up to homotopy rel. endpoints.
Mod 8, it is well-defined regardless of curve chosen and is gauge-invariant, and thus descends to a
well-defined function on R.

Finally, we can define, for any α ∈ R∗, µ(α) = sf(θ, α) for θ the trivial connection, giving a
function R∗ → Z/8. If R∗ is non-degenerate, then there are only finitely many points in R∗, so

Definition (The Casson invariant, again). If R∗ is non-degenerate, then define

λ(Σ) =
1

2

∑
α∈R(Σ)

(−1)µ(α)
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Figure 10. sf(A0, A1) = −2

That this definition is well-defined (not depending on the various choices we have made, such as
that of a Riemmanian metric) and equal to the original Casson Invariant is the subject of the paper
[10]. The key insight is that the above definitions all extend to the structure of Heegaard splittings
and their handlebodies, and that the intersection of the handlebodies gives rise to another Fredholm
operator which can be compared to the spectral flow.

5.2. Morse theory. When R(Σ) is degenerate, there is no intersection we can perturb to make
things finite again. We could instead try to perturb the function KA to some new function K ′

A.
We would still need to know which points to sum this new function over; we can solve this issue
by having K ′

A be the Hessian of some other operator, and perturbing this other operator to have
finitely many critical points. Then we can let K ′

A be the Hessian of the perturbed operator and sum
over the critical points.

The curvature of a connection A ∈ Ω1(M ; su(2)) is the 2-form FA = dA+A∧A. As an example,
if

A =

(
i 0
0 −i

)
dx+

(
0 1
−1 0

)
dy

Then

FA = dA+A ∧A = A ∧A =

[(
i 0
0 −i

)
,

(
0 1
−1 0

)]
dx ∧ dy +

[(
0 1
−1 0

)
,

(
i 0
0 −i

)]
dy ∧ dx

=

(
0 4i
4i 0

)
dx ∧ dy

Theorem 19. A connection is flat iff FA = 0.

Let θ be the ‘trivial’ connection in A induced by the product structure, and pick a path [0, 1] → A
which begins at θ and ends at a connection A. This path determines a connection on the trivial
SU(2) bundle over [0, 1] × M (over which connections are defined exactly analogously as over M
itself, and all the same theory carries over). Then, calling this connection Aγ , we define

cs(A) :=

∫
[0,1]×M

tr(FAγ
∧ FAγ

)

Where the ‘trace’ is the su(2)-lie algebra pairing (ignoring the differential form component), i.e.,
tr((u ⊗ ω) ∧ (v ⊗ σ)) = − 1

2 tr(uv)ω ∧ σ. It turns out that this function is independent of the path
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γ; it is also true that for g ∈ G , cs(g · A) − cs(A) ∈ Z, so that the function descends to a map
cs : B → R/Z.

Remember that B∗ is an infinite dimensional Banach manifold, and so there is a notion of gradient
of functions. It turns out that the gradient ∇ cs can be computed to be

(∇ cs)(A) = − 1

4π2
FA

Thus, the ‘critical points’ of cs on B∗ are exactly the flat, irreducible connections, i.e., R∗! Since
constant multiples don’t matter when computing kernels, index, or spectrum, we can ignore the
− 1

4π2 factor. The hessian of cs is in turn ⋆dA : ker d∗A → ker d∗A. If A is flat and irreducible, then
the kernel of KA is the same as the kernel of ⋆dA, so that whenever one is nondegenerate, so is the
other. This is why it makes sense to define the Casson invariant using KA for nondegenerate spaces.
For degenerate spaces it now suffices to take a perturbation of the Chern-Simons functional which
has finitely many critical points. One can then define the adapted K ′

A on these critical points and
continue as before. See [8] for an in-depth explanation.

5.3. “Applications”: Instanton Floer. Instanton Floer homology extends the gauge theoretical
definition of the Casson invariant up to its logical conclusion: the spectral flow gave a number
valid not just mod 2, but modulo 8. Assuming that Σ is nondegenerate, so that the set of points
x ∈ R(Σ) is finite, we can assign to each k ∈ Z/8 the free abelian group generated by the set
{x ∈ R(Σ)|µ(x) ∼= k mod 8}.

Denote each of these abelian groups as ICk(Σ), with IC(Σ) =
⊕8

k=0 ICk the a graded abelian
group. There exists boundary operators ∂ : ICk → ICk−1 (with ∂2 = 0, of course) making this
into a chain complex. The associated homology, I∗(Σ), is the Instanton Floer Homology of Σ. The
boundary maps are somewhat complicated to define, and even more complicated to compute. So
what does Instanton Floer have to offer that the Casson invariant doesn’t? For one, it retains
more of the original information about the number of points in R(Σ). If the boundary operators
all vanish - which frequently occurs - then the homology contains perfect information about R(Σ).
Furthermore, IC is functorial with respect to cobordisms. This makes it a powerful way of examining
the theoretical structure of homology spheres. Just as with the Casson invariant, for degenerate
manifolds there is a way of perturbing the functions so that everything becomes finite.

Today, Instanton Floer is used extensively. Its applications are wide ranging; it strengthens of
the Casson invariant in almost every area. For example, Kronheimer and Mrowka in their proof of
property P in [5], and Daemi et al. use it in their progress on cosmetic surgery in [1]. Notice that
we used the Casson invariant to make more limited progress in these areas. For more information
about Instanton Floer homology, see [2] and [8].
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