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Bounds on the Hausdorff Measure of the Minkowski
Sausage

Colby Riley and Brooks Bentley

Abstract. We produce a formula to calculate increasingly tight lower bounds on the Hausdorff
measure of the Minkowski sausage. We also present a non-trivial construction for an upper limit
on the Minkowski sausage, then state some conjectures and directions for future work.

1. Introduction

The Minkowski sausage, also known as the type-2 quadratic Koch curve, is a well-
known example of a self-similar fractal with a Hausdorff Dimension equal to 1.5. It
has been used as an example in computing applications and in physical simulations,
such as in [5][7] and [1]. While the Hausdorff measure of some fractals, such as the
Sierpinski gasket, have been studied, the Hausdorff measure of most fractals is con-
sidered in general to be a difficult problem [8]. Specifically, the Hausdorff measure of
the Minkowski sausage remains uncalculated. Using the techniques in [3], it is straight-
forward but computationally expensive to calculate upper bounds on fractals satisfying
the open set condition. Furthermore, lower bounds for the Koch Curve were obtained
using a modification [4]. While this method does not numerically outperform other
methods that have been developed for the Sierpinski gasket [6], it is of interest for its
ability to approach the measure indefinitely with an exponentially decreasing error.

Theorem 1. The Hausdorff Measure of the Minkowski sausage has the following upper
bound:
H* (M) < 0.6094265648090738

Theorem 2. The Minkowski sausage satisfies the following lower bound:
H (M) > ane_36\/§(%)n

where a,, is defined below and calculable, in theory, to any level of accuracy.
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Let D c R” be a nonempty set. E C R" is a self-similar set defined by m similar
contracting maps S; : D — D, with contracting ratios, 0 < ¢; < 1(i = 1,2,...,m). Let
E satisty the Open Set Condition (OSC), that is, that there exists a nonempty open set
U such that S;(U) N S;(U) =0 fori # j,and U 2 S;(U) for all i. Then

dimg(E) =s

0<HS(E) < oo

Where s satisfies >/, ¢} = 1, dimpy(E) and H*(E) denote the Hausdorff dimen-
sion and measure of E, respectively [2]. Let J,, = {(i1i2...in) : 1 < iy, i, ...iy < m}
and E;;, i, =i 08, 0...08; (E), which is self-similar to E. Then we have E =
Uy, Eiis...i,- Throughout the paper, the diameter of any set A will be represented as
|A].

Proposition 1.1 and 1.2 are taken from [3], and restated here for completeness.

Proposition 1.1. Suppose that E is a self-similar set satisfying the open set condition.
Forn>1,1<k<m" let A|,As, ..., Ak € {Eii,. i, : 1 <iy,ia,...0p < m} and u be
3ct . Let

the common self-similar probability measure on E, u(E;;,. ;) = i CheCy

by = min | U |
A; E]Eéllz .in (Ul 1 A )

.....

where the minimum is taken over all possible unions of k choices of E; i, .i,. Let a, =
min| <x<mun{br}. If there exists a constant A > 0 such that a,, > A(n = 1,2,...), then
H*(E) > A.

We will say thataset A = Uf'{:l A; satisfies a,, if | (l\)

use A" or A to specify that the A; are from level n of the construction of E.

= a,. We will also sometimes

Proposition 1.2. As n increases, a, decreases, and lim,_,, a, = H*(E).

It is noted that if ¢; = ¢ = ... = ¢,y = ¢, then in the definition of by, p( {'(:1 A)
may be replaced with kc"*

1.1. The Minkowski sausage

The Minkowski sausage, named after Herman Minkowski, has been used as another
example of a basic self-similar fractal akin to the Sierpinski gasket or Koch curve. To
construct it, Let D = M be the convex quadrilateral with points (0, 0), (%, %), (1,0),( 2 —%).
let M be the unique self-similar attractor of the function system {S1, Sa, ..., Sg}, with

Si(M) =M
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Figure 1. The first steps of the construction of the Minkowski sausage, n = 1 andn =5

S2(M) = 3[R(M, 5)] + (5. 0)
S3(M) = iM + (3.5
Se(M) = 1 [R(M,-5)] + (3. 1)
Ss(M) = 1 [R(M,—%)] +(3.0)
Se(M) = {M + (5, -%)

S7(M) = 1 [R(M, 5)] +(3.-%)
Sg(M) = 3M +(3,0)

n
2
s
2

Where R(M, 0) is a counterclockwise rotation of M by 6 radians, and the addition
and scaling are point-wise. The resulting fraction has a contraction ratio ¢ of 1, and
with 8 copies created in each level of construction, let m = 8. Thus, the Hausdorff
dimension is s = log, 8 = 1.5.
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2. Upper Bound

The following construction develops the ideas of [6], namely, that a good candidate
for a,, can be found using circle intersections. The main observation is that just as the
convex hull of a shape has the same diameter as the original shape, one may extend
the sides of the shape to be arcs of a circle without increasing the diameter. Thus,
it is sensible that any K satisfying a,, would be interior of some set of intersecting
circles. The following construction is not optimized — the exact values were found via
human-mediated inspection after an initial guess — but it is also a non-trivial upper
bound.

Let B(p, r) be the ball with radius r centered at the point p. The following lemma,
while not showing how to find a,, restricts the possibilities inherent in any set which
does satisfy a,,. It gives a way to test whether a set which purports to be a close estim-
ation of a, can be easily improved or not, and formalizes the above notion of using
circle intersections.

Proposition 2.1. Let E C R" be a self-similar fractal satisfying the open set condi-
tion, and K = \J; A} be a union of A € {E;i, i, }. Let O =\ jc; B(pj,|K|) be an
intersection of balls, where {p ;} is some set of points indexed by the set j € J. Then
K satisfies an only if there exists O such that K = J; {A;l : A;‘ C 0}. Further, if the
convex hull of K is a polytope, an O exists such that J is finite.

Proof. Let K be the convex hull of K. It is a classical result that |[K| = |K|. For any set
of points A, let ©4 be the following circle intersections:

Oa=[ [B(p,|Al) : pj € A}
J

Take any point p € Og. Then |K U p| = |K|, because otherwise, dist(p, g) > |K]| for
some point q in K, so g ¢ B(q, |K|), and p ¢ ©g. So |K U p| = |K|.

Notice that although ©g,,, € @, any point ¢ € Og within a distance of |K| from
p is not excluded. We also know that |A;| < |K| for any A;, since K is the union of
potentially several A;. Thus, if p € A; for some A;, and A; C O, then |K| = |[K U A;|.
So (lﬁiil,i < ,If,l: , and by definition, K cannot satisfy a,. So either K = J j{A;‘ : A;f -
Og }, which is in the form we wanted, or K does not satisfy a,.

The finiteness condition of the number of intersecting balls is clear after noticing
that if K is a polytope, then letting V be the set of vertices of K, that Oy = Og (let p
be in K: since K is the convex hull, p is a linear combination of the vertices of K, and
B(p, |K]) follows).

Theorem 2.1.
H*(M) < 0.6094265648090738
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Figure 2. An example where K is a triangle. The outer circle is B(p, |K|), and the curve of
intersecting arcs is Ok . Notice that ©x C B(p, |K]).

Proof. In the spirit of proposition 2.1, let rg = V33})272218 ~ 0.1818895537, and define ®

to be the intersections of

0= ({35356

#( (50723073

08((73 5

Let ©, = UL, {A? : A? ¢ ©},1 < k < m. In other words, ©, is the set of all A"
which fit entirely within the circle intersections ®. Once we have constructed ®,, let

0, = |,f)c';|: (In this way, H*(M) < a, < 6, for any n). ®,, is constructed in such a way

that it is easy to compute the values in table 1.

Table 1. Values of 6,,
k |®n| On
5 0.1767766952966369 0.951365692002177
60 | 0.17921510973005467 | 0.6474118500200924
515 | 0.18175609568956003 | 0.6162915263508869
4171 | 0.18188955370398896 | 0.6094265648090738

Nl WiNS
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Figure 3. ©, and Os.

For computational reasons, to find 6,,, we use maps of the constructor My, not
E itself. For a shape such as the Sierpinski gasket, this posed no issue because the
constructor, an equilateral triangle, has as the same convex hull as Sierpinski gasket
itself. In our construction, it should be noted that My may result in larger diameters
than using M itself. Thus, our values for 6,, are strictly larger than could be achieved
by using a more accurate constructor. Since M C M), the inequality is valid and

H*(M) < as < 05 = 0.6094265648090738
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3. Lower Bound

To find the lower bound, we must first prove a lemma which provides a frame for the
lower bound formula, generalizing work in [3]. Then, we will apply the lemma to the
Minkowski sausage. The result will be a computable equation which gives successively
tighter lower bounds on the Hausdorff measure.

Lemma 3.1. Suppose that a self-similar fractal E satisfies the open set condition with
a common contraction ratio ¢ and dimension s > 0. If there exists a value d > 0 such

that at any level n of the construction there exists a set K = Ule A; with |K| = d that
_25E|_.n
satisfies a,, then H*(E) > aye” 40-0

Proof. LetK = Ule A;, such that ]I(I;IZ

r= % for convenience. By the hypothesis, we can assume that |K| > d. Then there
exists A"~! € E,_; such that A; € A;“l for j € {1,2,...,n — 1}, where each A;?‘l is
different. By the scaling, it is clear that k < mk,_; and

kn—l
n-1
ULY

j=1

= a,, for some level n of the construction. Let

1
< K| +2|E|(;)

(D
- K| +2|E|r(%)n

Thus,
K| K|

k z n
Ut an 1| 1k 218 0(2)

v

Therefore since k < mk,_1 and m = r*,

LY 1

|K|S 1
1\*" 20Elr {1\ s(n-1)
(07 Tl
1 S
=a, > an-1
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Since |K| > d for all K that satisfy a,, at any n, we can unfix n and apply the above
result [ > 1 times for the formula

n+l 1 S
iz an [ ] [——
j=n+l \ 1 4 2= |E|r (r)

Take the logarithm on both sides and use the fact that In(1 + x) < x for all x > 0 to
achieve the following:

n+l .
In(an+) = In(ay,) —s Z In (1 + 2|§|r (%)])

J=n+1

2= 5 (1573

Jj=n+l

Let [ — oo, giving us by proposition 1.2,

20E|r 1 n+l1
d r

In(H*(E)) =z In(a,) — s

1-1
2s|E|r(r)n
=1In(an) - ( 1
2s|E|
TN

And finally,
_2s|E| |

H* (E) = aye 40- ¢
| |

Remark. The larger d is, the tighter the bounds are. To this point, determining the
maximum value for d gives us the upper limit to the effectiveness of this approximation.

Lemma 3.1 is of theoretical interest beyond the application to the Minkowski saus-
age; which fractals have such a value of d that can be easily found is an open question,
and it is not obvious that #* (E) > 0 must imply that d > 0, but we leave further discus-
sion of this to the end of the paper. Before we determine d in the case of the Minkowski
sausage, we can slightly improve the bounds formula itself for the specific application
of this paper.

Corollary 3.1. If E = M, i.e., the Minkowski sausage, then

2s|E| .n

H*(M) > a,e” " €




Minkowski Bounds 9

Proof. Notice that in the case of the Minkowski sausage, equation 1 can clearly be
improved to
1 1\n-1
< K|+ (2|E| - 2|E|(—))(—)
r r

-t (- (1)

= K|+ 2|E|(r - 1)(%)"

knfl
n—-1
Aj
J=1

The rest of the proof follows exactly as in lemma 3.1, with an extra cancelation towards
the end. |

Theorem 3.1. The Hausdor[f Measure of the Minkowski sausage satisfies
HS (M) > ane—36\6(%)"

Proof. To prove the theorem, we use corollary 3.1 and find a suitable value of d for
the Minkowski sausage (and as before, we calculate d based off of the constructor
of the Minkowski sausage because the Minkowski sausage is a proper subset of the
construction at any stage). Let K = Ule A; be a collection of A; at level n of the
construction of M. Let A = {S;(M) : S;(M)NK #0},i=1,2,...,8, that is, the eight
immediate subsections of the Minkowski sausage. Then there are three cases, each
dealing with how different elements of A? connect. Case 1 assumes that there exist
elements of A? which are disconnected, case 2 handles if all the elements within A are
connected, and case 3 deals with the circumstance that A® contains only one element.

Case 1. There exist two elements of AY which are disconnected. Then the diameter of
K is at least the minimum distance between two unconnected sets of A°, which is the
minimum distance between S, (Mp) and S4(Mp). Let d; be the distance between the

lines (1,0) (15, 1) and (3, 35) (3. 3), which is E/—g. See figure 4.

Case 2. Every element of A is connected to every other element in the set. By the
construction of M, A can then only contain 2 elements, and by symmetry, we only
need to consider two possibilities of connected sets, those being {A1, A2} and {A4, As}.
We use a similar idea for both of them. Let A7 = Sy o Sg(My), A} = S» o S1(Mp),
A} =S40 Sg(Mp), and AL = S5 0 S1(Mp). Suppose first that A = {A}, Ar):
a) If KN (A=A} #0orKn(Ay—A)) # 0, then because removing A} or A))
disconnects M, the diameter of K must be at least the minimum of the distances
between A| — A’l and A,, or between A, — Aé and A, respectively. By the figure

5, this distance is %; let that be equal to d.
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S

Figure 4. The shortest distance between two disconnected subsections.

b) if K € (A7 UAY), then by similarity, we can scale K by some integer 4’ about

the point A} N A; such that this scaled K’ satisfies case a), i.e., that K’ no longer

. e . K'|$ K|*
fits entirely within (A’l U Aé). Since % = ﬁ,
8

©(4)

the diameter is exactly similar to case a).

K’ also satisfies a,,, and

Supposing instead that A® = {Ay, As}, it follows exactly as in the {Aj, Ay} situ-

ation. The minimum distance here is the smallest distance between A4 — AZ‘ and As, or

\f

between As — AL and Ay, respectively. In figure 6, it is evident that this is equal to 4—3,

which we will set as d3.

Case 3. A contains only one element. By symmetry, we can scale K up by a factor
of some integer 4’ at some point p into a new K’ such that A% now contains multiple
elements and is covered under either case 1 or case 2 (where A% is defined analogously

to A® but for K”). After defining k” again analogously to k, then under the scaling and
K’1*  _ K|

e() k()"

similar to either case 1 or 2.

as in case 2a, so K’ satisfies a,,, and the diameter is therefore also

Since the three cases cover all possibilities for A?, the diameter d of the set K must

be at least d > min{dy, d», d3} = min {\Zf—g, X—g, %} = %. By lemma 3.1, this gives a

lower bound on the Minkowski sausage of

_2s|M| (l)n
c —

ane V5/60

- Lyn
ane 36V5(%)
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Figure 5. A; and A,

Remark. By a computer calculation, a; = 0.7217876047321581. Thus, at n = 1, the-
orem 2 gives a lower bound of about 0.00000000131341377112, or 1.3 - 10~°. How-
1n

ever, due to the term 7, the formula has an exponentially decreasing error and a quick

convergence if values such as a4 or as can be found with accuracy.

4. Future research

Without a better algorithm to prune which branches to search, it is currently impractical
in practice to find tight lower bounds using this method. In fact, to find even a; exactly,
a naive algorithm must search more than eighteen quintillion different combinations.
However, there is promise towards several areas for improvement.

If one can further restrict the cases where a given collection of A satisfy a,,, we can
increase the value of d and therefore improve the lower bound formula. For example,
in the Sierpinski gasket, there is evidence that any K satisfying a, will always lie in
all three large subtriangles, but the current lower bound featured in [3] features a lower
bound as if K might be found in only two of the three subtriangles. Restricting the
cases will also help in calculating a,, since this would allow a computer to prune its
searching program significantly.

Our first conjecture demonstrates the power of 2; if a way to find a,, for large
values of n is discovered, then the lower bound converges almost immediately to a,,,
and H*(M) is all but found.

Conjecture 1. 65 ~ as, and so by theorem 2, H*(M) > 0.563353147953.
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Figure 6. A4 and A5

lemma 3.1 provides an obvious way of extending the results of the paper. If d can
be found reliably for many different fractals, then lower bounds formulas for all of those
fractals are immediately found as well. However, we do not currently know if it is true
that d even must be greater than zero for many fractals.

Conjecture 2. For a given fractal E, d > 0 if and only if H*(E) > 0.

Conjecture 3. There exists a method to construct d for any fractal E if d > 0, using
a technique similar to the scaling used in this paper.

These conjectures, if true, would strengthen both theorem 2 and lemma 3.1.
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