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Bounds on the Hausdorff Measure of the Minkowski
Sausage

Colby Riley and Brooks Bentley

Abstract. We produce a formula to calculate increasingly tight lower bounds on the Hausdorff
measure of the Minkowski sausage. We also present a non-trivial construction for an upper limit
on the Minkowski sausage, then state some conjectures and directions for future work.

1. Introduction

The Minkowski sausage, also known as the type-2 quadratic Koch curve, is a well-
known example of a self-similar fractal with a Hausdorff Dimension equal to 1.5. It
has been used as an example in computing applications and in physical simulations,
such as in [5][7] and [1]. While the Hausdorff measure of some fractals, such as the
Sierpinski gasket, have been studied, the Hausdorff measure of most fractals is con-
sidered in general to be a difficult problem [8]. Specifically, the Hausdorff measure of
the Minkowski sausage remains uncalculated. Using the techniques in [3], it is straight-
forward but computationally expensive to calculate upper bounds on fractals satisfying
the open set condition. Furthermore, lower bounds for the Koch Curve were obtained
using a modification [4]. While this method does not numerically outperform other
methods that have been developed for the Sierpinski gasket [6], it is of interest for its
ability to approach the measure indefinitely with an exponentially decreasing error.

Theorem 1. The Hausdorff Measure of the Minkowski sausage has the following upper
bound:

𝐻𝑠 (𝑀) ≤ 0.6094265648090738

Theorem 2. The Minkowski sausage satisfies the following lower bound:

𝐻𝑠 (𝑀) ≥ 𝑎𝑛𝑒−36
√

5( 1
4 )

𝑛

where 𝑎𝑛 is defined below and calculable, in theory, to any level of accuracy.
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Let 𝐷 ⊂ R𝑛 be a nonempty set. 𝐸 ⊂ R𝑛 is a self-similar set defined by 𝑚 similar
contracting maps 𝑆𝑖 : 𝐷 → 𝐷, with contracting ratios, 0 < 𝑐𝑖 < 1(𝑖 = 1, 2, ..., 𝑚). Let
𝐸 satisfy the Open Set Condition (OSC), that is, that there exists a nonempty open set
𝑈 such that 𝑆𝑖 (𝑈) ∩ 𝑆 𝑗 (𝑈) = ∅ for 𝑖 ≠ 𝑗 , and𝑈 ⊇ 𝑆𝑖 (𝑈) for all 𝑖. Then

𝑑𝑖𝑚𝐻 (𝐸) = 𝑠

0 < 𝐻𝑠 (𝐸) < ∞

Where 𝑠 satisfies
∑𝑚
𝑖=1 𝑐

𝑠
𝑖
= 1, 𝑑𝑖𝑚𝐻 (𝐸) and 𝐻𝑠 (𝐸) denote the Hausdorff dimen-

sion and measure of 𝐸 , respectively [2]. Let 𝐽𝑛 = {(𝑖1𝑖2...𝑖𝑛) : 1 ≤ 𝑖1, 𝑖2, ...𝑖𝑛 ≤ 𝑚}
and 𝐸𝑖1𝑖2...𝑖𝑛 = 𝑆𝑖1 ◦ 𝑆𝑖2 ◦ ... ◦ 𝑆𝑖𝑛 (𝐸), which is self-similar to 𝐸 . Then we have 𝐸 =⋃
𝐽𝑛
𝐸𝑖1𝑖2...𝑖𝑛 . Throughout the paper, the diameter of any set 𝐴 will be represented as

|𝐴|.
Proposition 1.1 and 1.2 are taken from [3], and restated here for completeness.

Proposition 1.1. Suppose that 𝐸 is a self-similar set satisfying the open set condition.
For 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑚𝑛, let Δ1,Δ2, ...,Δ𝑘 ∈ {𝐸𝑖1𝑖2...𝑖𝑛 : 1 ≤ 𝑖1, 𝑖2, ...𝑖𝑛 ≤ 𝑚} and 𝜇 be
the common self-similar probability measure on 𝐸 , 𝜇(𝐸𝑖1𝑖2...𝑖𝑛 ) = 𝑐𝑠𝑖1𝑐

𝑠
𝑖2
...𝑐𝑠

𝑖𝑛
. Let

𝑏𝑘 = min
Δ𝑖∈𝐸𝑖1𝑖2 ...𝑖𝑛
𝑖=1,2,...,𝑘

{ ��⋃𝑘
𝑖=1 Δ𝑖

��𝑠
𝜇
( ⋃𝑘

𝑖=1 Δ𝑖
) }

where the minimum is taken over all possible unions of 𝑘 choices of 𝐸𝑖1𝑖2...𝑖𝑛 . Let 𝑎𝑛 =
min1≤𝑘≤𝑚𝑛 {𝑏𝑘}. If there exists a constant 𝐴 > 0 such that 𝑎𝑛 ≥ 𝐴(𝑛 = 1, 2, ...), then
𝐻𝑠 (𝐸) > 𝐴.

We will say that a set 𝐴 =
⋃𝑘
𝑖=1 Δ𝑖 satisfies 𝑎𝑛 if |𝐴|𝑠

𝜇 (𝐴) = 𝑎𝑛. We will also sometimes
use Δ𝑛 or Δ𝑛

𝑖
to specify that the Δ𝑖 are from level 𝑛 of the construction of 𝐸 .

Proposition 1.2. As 𝑛 increases, 𝑎𝑛 decreases, and lim𝑛→∞ 𝑎𝑛 = 𝐻𝑠 (𝐸).

It is noted that if 𝑐1 = 𝑐2 = ... = 𝑐𝑚 = 𝑐, then in the definition of 𝑏𝑘 , 𝜇
( ⋃𝑘

𝑖=1 Δ𝑖
)

may be replaced with 𝑘𝑐𝑛𝑠.

1.1. The Minkowski sausage

The Minkowski sausage, named after Herman Minkowski, has been used as another
example of a basic self-similar fractal akin to the Sierpinski gasket or Koch curve. To
construct it, Let𝐷 =𝑀0 be the convex quadrilateral with points (0,0), ( 1

3 ,
1
3 ), (1,0), (

2
3 ,−

1
3 ).

let 𝑀 be the unique self-similar attractor of the function system {𝑆1, 𝑆2, ..., 𝑆8}, with

𝑆1(𝑀) = 1
4𝑀
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Figure 1. The first steps of the construction of the Minkowski sausage, 𝑛 = 1 and 𝑛 = 5

𝑆2(𝑀) = 1
4 [𝑅(𝑀,

𝜋
2 )] + ( 1

4 , 0)
𝑆3(𝑀) = 1

4𝑀 + ( 1
4 ,

1
4 )

𝑆4(𝑀) = 1
4 [𝑅(𝑀,−

𝜋
2 )] + ( 1

2 ,
1
4 )

𝑆5(𝑀) = 1
4 [𝑅(𝑀,−

𝜋
2 )] + ( 1

2 , 0)
𝑆6(𝑀) = 1

4𝑀 + ( 1
2 ,−

1
4 )

𝑆7(𝑀) = 1
4 [𝑅(𝑀,

𝜋
2 )] + ( 3

4 ,−
1
4 )

𝑆8(𝑀) = 1
4𝑀 + ( 3

4 , 0)
Where 𝑅(𝑀, 𝜃) is a counterclockwise rotation of 𝑀 by 𝜃 radians, and the addition

and scaling are point-wise. The resulting fraction has a contraction ratio 𝑐 of 1
4 , and

with 8 copies created in each level of construction, let 𝑚 = 8. Thus, the Hausdorff
dimension is 𝑠 = log4 8 = 1.5.



4 C. Riley and B. Bentley

2. Upper Bound

The following construction develops the ideas of [6], namely, that a good candidate
for 𝑎𝑛 can be found using circle intersections. The main observation is that just as the
convex hull of a shape has the same diameter as the original shape, one may extend
the sides of the shape to be arcs of a circle without increasing the diameter. Thus,
it is sensible that any 𝐾 satisfying 𝑎𝑛 would be interior of some set of intersecting
circles. The following construction is not optimized — the exact values were found via
human-mediated inspection after an initial guess — but it is also a non-trivial upper
bound.

Let 𝐵(𝑝, 𝑟) be the ball with radius 𝑟 centered at the point 𝑝. The following lemma,
while not showing how to find 𝑎𝑛, restricts the possibilities inherent in any set which
does satisfy 𝑎𝑛. It gives a way to test whether a set which purports to be a close estim-
ation of 𝑎𝑛 can be easily improved or not, and formalizes the above notion of using
circle intersections.

Proposition 2.1. Let 𝐸 ⊂ R𝑛 be a self-similar fractal satisfying the open set condi-
tion, and 𝐾 =

⋃
𝑖 Δ

𝑛
𝑖

be a union of Δ𝑛
𝑖
∈ {𝐸𝑖1𝑖2...𝑖𝑛 }. Let 𝑂 =

⋂
𝑗∈𝐽 𝐵(𝑝 𝑗 , |𝐾 |) be an

intersection of balls, where {𝑝 𝑗 } is some set of points indexed by the set 𝑗 ∈ 𝐽. Then
𝐾 satisfies 𝑎𝑛 only if there exists 𝑂 such that 𝐾 =

⋃
𝑗

{
Δ𝑛
𝑗

: Δ𝑛
𝑗
⊂ 𝑂

}
. Further, if the

convex hull of 𝐾 is a polytope, an 𝑂 exists such that 𝐽 is finite.

Proof. Let 𝐾̄ be the convex hull of 𝐾 . It is a classical result that |𝐾 | = |𝐾̄ |. For any set
of points 𝐴, let ⊙𝐴 be the following circle intersections:

⊙𝐴 =
⋂
𝑗

{𝐵(𝑝 𝑗 , |𝐴|) : 𝑝 𝑗 ∈ 𝐴}

Take any point 𝑝 ∈ ⊙𝐾̄ . Then |𝐾 ∪ 𝑝 | = |𝐾 |, because otherwise, dist(𝑝, 𝑞) > |𝐾 | for
some point q in 𝐾 , so 𝑞 ∉ 𝐵(𝑞, |𝐾 |), and 𝑝 ∉ ⊙𝐾̄ . So |𝐾̄ ∪ 𝑝 | = |𝐾 |.

Notice that although ⊙𝐾̄∪𝑝 ⊆ ⊙𝐾̄ , any point 𝑞 ∈ ⊙𝐾̄ within a distance of |𝐾 | from
𝑝 is not excluded. We also know that |Δ𝑖 | ≤ |𝐾 | for any Δ𝑖 , since 𝐾 is the union of
potentially several Δ𝑖 . Thus, if 𝑝 ∈ Δ𝑖 for some Δ𝑖 , and Δ𝑖 ⊂ ⊙𝐾̄ , then |𝐾 | = |𝐾 ∪ Δ𝑖 |.
So |𝐾∪Δ𝑖 |𝑠

(𝑘+1)𝑐𝑛𝑠 <
|𝐾 |𝑠
𝑘𝑐𝑛𝑠

, and by definition,𝐾 cannot satisfy 𝑎𝑛. So either𝐾 =
⋃
𝑗 {Δ𝑛𝑗 : Δ𝑛

𝑗
⊂

⊙𝐾̄ }, which is in the form we wanted, or 𝐾 does not satisfy 𝑎𝑛.
The finiteness condition of the number of intersecting balls is clear after noticing

that if 𝐾̄ is a polytope, then letting 𝑉 be the set of vertices of 𝐾̄ , that ⊙𝑉 = ⊙𝐾̄ (let 𝑝
be in 𝐾̄: since 𝐾̄ is the convex hull, 𝑝 is a linear combination of the vertices of 𝐾̄ , and
𝐵(𝑝, |𝐾 |) follows).

Theorem 2.1.
𝐻𝑠 (𝑀) ≤ 0.6094265648090738
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Figure 2. An example where 𝐾 is a triangle. The outer circle is 𝐵(𝑝, |𝐾 |), and the curve of
intersecting arcs is ⊙𝐾 . Notice that ⊙𝐾 ⊂ 𝐵(𝑝, |𝐾 |).

Proof. In the spirit of proposition 2.1, let 𝑟0 =
√

312218
3072 ≈ 0.1818895537, and define Θ

to be the intersections of

Θ = 𝐵

(( 59
128

,
69
256

)
, 𝑟0

)
∩ 𝐵

((1679
3072

,
335
3072

)
, 𝑟0

)
∩ 𝐵

(( 7
12
,

1
6

)
, 𝑟0

)
Let Θ𝑛 =

⋃𝑘
𝑖=1

{
Δ𝑛
𝑖

: Δ𝑛
𝑖
⊂ Θ

}
, 1 ≤ 𝑘 ≤ 𝑚. In other words, Θ𝑛 is the set of all Δ𝑛

which fit entirely within the circle intersections Θ. Once we have constructed Θ𝑛, let
𝜃𝑛 =

|Θ𝑛 |𝑠
𝑘𝑐𝑛𝑠

(In this way, 𝐻𝑠 (𝑀) ≤ 𝑎𝑛 ≤ 𝜃𝑛 for any 𝑛). Θ𝑛 is constructed in such a way
that it is easy to compute the values in table 1.

Table 1. Values of 𝜃𝑛
𝑛 𝑘 |Θ𝑛 | 𝜃𝑛

2 5 0.1767766952966369 0.951365692002177
3 60 0.17921510973005467 0.6474118500200924
4 515 0.18175609568956003 0.6162915263508869
5 4171 0.18188955370398896 0.6094265648090738
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Figure 3. Θ2 and Θ5.

For computational reasons, to find 𝜃𝑛, we use maps of the constructor 𝑀0, not
𝐸 itself. For a shape such as the Sierpinski gasket, this posed no issue because the
constructor, an equilateral triangle, has as the same convex hull as Sierpinski gasket
itself. In our construction, it should be noted that 𝑀0 may result in larger diameters
than using 𝑀 itself. Thus, our values for 𝜃𝑛 are strictly larger than could be achieved
by using a more accurate constructor. Since 𝑀 ⊂ 𝑀0, the inequality is valid and

𝐻𝑠 (𝑀) ≤ 𝑎5 ≤ 𝜃5 = 0.6094265648090738
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3. Lower Bound

To find the lower bound, we must first prove a lemma which provides a frame for the
lower bound formula, generalizing work in [3]. Then, we will apply the lemma to the
Minkowski sausage. The result will be a computable equation which gives successively
tighter lower bounds on the Hausdorff measure.

Lemma 3.1. Suppose that a self-similar fractal 𝐸 satisfies the open set condition with
a common contraction ratio 𝑐 and dimension 𝑠 > 0. If there exists a value 𝑑 > 0 such
that at any level 𝑛 of the construction there exists a set 𝐾 =

⋃𝑘
𝑖=1 Δ𝑖 with |𝐾 | ≥ 𝑑 that

satisfies 𝑎𝑛, then 𝐻𝑠 (𝐸) ≥ 𝑎𝑛𝑒−
2𝑠 |𝐸 |
𝑑 (1−𝑐) 𝑐

𝑛

.

Proof. Let 𝐾 =
⋃𝑘
𝑖=1 Δ𝑖 , such that |𝐾 |𝑠

𝑘𝑐𝑠𝑛
= 𝑎𝑛, for some level 𝑛 of the construction. Let

𝑟 = 1
𝑐

for convenience. By the hypothesis, we can assume that |𝐾 | ≥ 𝑑. Then there
exists Δ𝑛−1 ∈ 𝐸𝑛−1 such that Δ𝑖 ∈ Δ𝑛−1

𝑗
for 𝑗 ∈ {1, 2, ..., 𝑛 − 1}, where each Δ𝑛−1

𝑗
is

different. By the scaling, it is clear that 𝑘 ≤ 𝑚𝑘𝑛−1 and����� 𝑘𝑛−1⋃
𝑗=1

Δ𝑛−1
𝑗

����� ≤ |𝐾 | + 2|𝐸 |
(1
𝑟

)𝑛−1

= |𝐾 | + 2|𝐸 |𝑟
(1
𝑟

)𝑛 (1)

Thus,
|𝐾 |��� ⋃𝑘𝑛−1

𝑗=1 Δ𝑛−1
𝑗

��� ≥ |𝐾 |

|𝐾 | + 2|𝐸 |𝑟
(

1
𝑟

)𝑛
=

1

1 + 2 |𝐸 |𝑟
|𝐾 |

(
1
𝑟

)𝑛
≥ 1

1 + 2 |𝐸 |𝑟
𝑑

(
1
𝑟

)𝑛
Therefore since 𝑘 ≤ 𝑚𝑘𝑛−1 and 𝑚 = 𝑟𝑠,

|𝐾 |𝑠

𝑘

(
1
𝑚

)𝑛 ≥
(

1

1 + 2 |𝐸 |𝑟
𝑑

(
1
𝑟

)𝑛 )𝑠
��� ⋃𝑘𝑛−1

𝑗=1 Δ𝑛−1
𝑗

���𝑠
𝑘𝑛−1

(
1
𝑚

)𝑛−1

⇒ |𝐾 |𝑠

𝑘

(
1
𝑟

)𝑠𝑛 ≥
(

1

1 + 2 |𝐸 |𝑟
𝑑

(
1
𝑟

)𝑛 )𝑠
��� ⋃𝑘𝑛−1

𝑗=1 Δ𝑛−1
𝑗

���𝑠
𝑘𝑛−1

(
1
𝑟

)𝑠 (𝑛−1)

⇒ 𝑎𝑛 ≥
(

1

1 + 2 |𝐸 |𝑟
𝑑

(
1
𝑟

)𝑛 )𝑠𝑎𝑛−1
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Since |𝐾 | ≥ 𝑑 for all 𝐾 that satisfy 𝑎𝑛 at any 𝑛, we can unfix 𝑛 and apply the above
result 𝑙 ≥ 1 times for the formula

𝑎𝑛+𝑙 ≥ 𝑎𝑛
𝑛+𝑙∏
𝑗=𝑛+1

(
1

1 + 2 |𝐸 |𝑟
𝑑

(
1
𝑟

) 𝑗 )𝑠
Take the logarithm on both sides and use the fact that ln(1 + 𝑥) ≤ 𝑥 for all 𝑥 > 0 to
achieve the following:

ln(𝑎𝑛+𝑙) ≥ ln(𝑎𝑛) − 𝑠
𝑛+𝑙∑︁
𝑗=𝑛+1

ln
(
1 + 2|𝐸 |𝑟

𝑑

(1
𝑟

) 𝑗 )
≥ ln(𝑎𝑛) − 𝑠

𝑛+𝑙∑︁
𝑗=𝑛+1

(
2|𝐸 |𝑟
𝑑

(1
𝑟

) 𝑗 )
Let 𝑙 → ∞, giving us by proposition 1.2,

ln(𝐻𝑠 (𝐸)) ≥ ln(𝑎𝑛) − 𝑠
2 |𝐸 |𝑟
𝑑

(
1
𝑟

)𝑛+1

1 − 1
𝑟

= ln(𝑎𝑛) −
2𝑠 |𝐸 |𝑟

(
1
𝑟

)𝑛
𝑑 (𝑟 − 1)

= ln(𝑎𝑛) −
2𝑠 |𝐸 |
𝑑 (1 − 𝑐) 𝑐

𝑛

And finally,
𝐻𝑠 (𝐸) ≥ 𝑎𝑛𝑒−

2𝑠 |𝐸 |
𝑑 (1−𝑐) 𝑐

𝑛

Remark. The larger 𝑑 is, the tighter the bounds are. To this point, determining the
maximum value for 𝑑 gives us the upper limit to the effectiveness of this approximation.

Lemma 3.1 is of theoretical interest beyond the application to the Minkowski saus-
age; which fractals have such a value of 𝑑 that can be easily found is an open question,
and it is not obvious that 𝐻𝑠 (𝐸) > 0 must imply that 𝑑 > 0, but we leave further discus-
sion of this to the end of the paper. Before we determine 𝑑 in the case of the Minkowski
sausage, we can slightly improve the bounds formula itself for the specific application
of this paper.

Corollary 3.1. If 𝐸 = 𝑀 , i.e., the Minkowski sausage, then

𝐻𝑠 (𝑀) ≥ 𝑎𝑛𝑒−
2𝑠 |𝐸 |
𝑑
𝑐𝑛
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Proof. Notice that in the case of the Minkowski sausage, equation 1 can clearly be
improved to ���� 𝑘𝑛−1⋃

𝑗=1
Δ𝑛−1
𝑗

���� ≤ |𝐾 | +
(
2|𝐸 | − 2|𝐸 |

(1
𝑟

)) (1
𝑟

)𝑛−1

= |𝐾 | + 2|𝐸 |
(
1 − 1

𝑟

) (1
𝑟

)𝑛−1

= |𝐾 | + 2|𝐸 | (𝑟 − 1)
(1
𝑟

)𝑛
The rest of the proof follows exactly as in lemma 3.1, with an extra cancelation towards
the end.

Theorem 3.1. The Hausdorff Measure of the Minkowski sausage satisfies

𝐻𝑠 (𝑀) ≥ 𝑎𝑛𝑒−36
√

5( 1
4 )

𝑛

Proof. To prove the theorem, we use corollary 3.1 and find a suitable value of 𝑑 for
the Minkowski sausage (and as before, we calculate 𝑑 based off of the constructor
of the Minkowski sausage because the Minkowski sausage is a proper subset of the
construction at any stage). Let 𝐾 =

⋃𝑘
𝑖=1 Δ𝑖 be a collection of Δ𝑖 at level 𝑛 of the

construction of 𝑀 . Let Δ0 = {𝑆𝑖 (𝑀) : 𝑆𝑖 (𝑀) ∩ 𝐾 ≠ ∅}, 𝑖 = 1, 2, ..., 8, that is, the eight
immediate subsections of the Minkowski sausage. Then there are three cases, each
dealing with how different elements of Δ0 connect. Case 1 assumes that there exist
elements of Δ0 which are disconnected, case 2 handles if all the elements within Δ0 are
connected, and case 3 deals with the circumstance that Δ0 contains only one element.

Case 1. There exist two elements of Δ0 which are disconnected. Then the diameter of
𝐾 is at least the minimum distance between two unconnected sets of Δ0, which is the
minimum distance between 𝑆2(𝑀0) and 𝑆4(𝑀0). Let 𝑑1 be the distance between the
lines

( 1
4 , 0

) ( 1
12 ,

1
16

)
and

( 5
12 ,

1
12

) ( 1
2 ,

1
4
)
, which is

√
5

20 . See figure 4.

Case 2. Every element of Δ0 is connected to every other element in the set. By the
construction of 𝑀 , Δ0 can then only contain 2 elements, and by symmetry, we only
need to consider two possibilities of connected sets, those being {Δ1,Δ2} and {Δ4,Δ5}.
We use a similar idea for both of them. Let Δ′

1 = 𝑆1 ◦ 𝑆8(𝑀0), Δ′
2 = 𝑆2 ◦ 𝑆1(𝑀0),

Δ′
4 = 𝑆4 ◦ 𝑆8(𝑀0), and Δ′

5 = 𝑆5 ◦ 𝑆1(𝑀0). Suppose first that Δ0 = {Δ1,Δ2}:
a) If 𝐾 ∩ (Δ1 − Δ′

1) ≠ ∅ or 𝐾 ∩ (Δ2 − Δ′
2) ≠ ∅, then because removing Δ′

1 or Δ′
2

disconnects𝑀 , the diameter of𝐾 must be at least the minimum of the distances
betweenΔ1 −Δ′

1 andΔ2, or betweenΔ2 −Δ′
2 andΔ1, respectively. By the figure

5, this distance is
√

5
60 ; let that be equal to 𝑑2.
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Figure 4. The shortest distance between two disconnected subsections.

b) if 𝐾 ∈ (Δ′
1 ∪ Δ′

2), then by similarity, we can scale 𝐾 by some integer 4𝑡 about
the pointΔ1 ∩Δ2 such that this scaled𝐾 ′ satisfies case a), i.e., that𝐾 ′ no longer
fits entirely within (Δ′

1 ∪ Δ′
2). Since |𝐾 ′ |𝑠

𝑘′
(

1
8

)𝑛−𝑡 = |𝐾 |𝑠

𝑘
(

1
8

)𝑛 , 𝐾 ′ also satisfies 𝑎𝑛, and

the diameter is exactly similar to case a).

Supposing instead that Δ0 = {Δ4, Δ5}, it follows exactly as in the {Δ1, Δ2} situ-
ation. The minimum distance here is the smallest distance between Δ4 − Δ′

4 and Δ5, or
between Δ5 − Δ′

5 and Δ4, respectively. In figure 6, it is evident that this is equal to
√

5
48 ,

which we will set as 𝑑3.

Case 3. Δ0 contains only one element. By symmetry, we can scale 𝐾 up by a factor
of some integer 4𝑡 at some point 𝑝 into a new 𝐾 ′ such that Δ0′ now contains multiple
elements and is covered under either case 1 or case 2 (whereΔ0′ is defined analogously
to Δ0 but for 𝐾 ′). After defining 𝑘 ′ again analogously to 𝑘 , then under the scaling and
as in case 2a, |𝐾 ′ |𝑠

𝑘′
(

1
8

)𝑛−𝑡 =
|𝐾 |𝑠

𝑘
(

1
8

)𝑛 , so 𝐾 ′ satisfies 𝑎𝑛, and the diameter is therefore also

similar to either case 1 or 2.

Since the three cases cover all possibilities for Δ0, the diameter 𝑑 of the set 𝐾 must
be at least 𝑑 ≥ min{𝑑1, 𝑑2, 𝑑3} = min

{√
5

20 ,
√

5
48 ,

√
5

60
}
=

√
5

60 . By lemma 3.1, this gives a
lower bound on the Minkowski sausage of

𝑎𝑛𝑒
− 2𝑠 |𝑀 |√

5/60
( 1
𝑐
)𝑛

= 𝑎𝑛𝑒
−36

√
5( 1

4 )
𝑛
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Figure 5. Δ1 and Δ2

Remark. By a computer calculation, 𝑎1 = 0.7217876047321581. Thus, at 𝑛 = 1, the-
orem 2 gives a lower bound of about 0.00000000131341377112, or 1.3 · 10−9. How-
ever, due to the term 1

4
𝑛, the formula has an exponentially decreasing error and a quick

convergence if values such as 𝑎4 or 𝑎5 can be found with accuracy.

4. Future research

Without a better algorithm to prune which branches to search, it is currently impractical
in practice to find tight lower bounds using this method. In fact, to find even 𝑎2 exactly,
a naive algorithm must search more than eighteen quintillion different combinations.
However, there is promise towards several areas for improvement.

If one can further restrict the cases where a given collection of Δ satisfy 𝑎𝑛, we can
increase the value of 𝑑 and therefore improve the lower bound formula. For example,
in the Sierpinski gasket, there is evidence that any 𝐾 satisfying 𝑎𝑛 will always lie in
all three large subtriangles, but the current lower bound featured in [3] features a lower
bound as if 𝐾 might be found in only two of the three subtriangles. Restricting the
cases will also help in calculating 𝑎𝑛, since this would allow a computer to prune its
searching program significantly.

Our first conjecture demonstrates the power of 2; if a way to find 𝑎𝑛 for large
values of 𝑛 is discovered, then the lower bound converges almost immediately to 𝑎𝑛,
and 𝐻𝑠 (𝑀) is all but found.

Conjecture 1. 𝜃5 ≈ 𝑎5, and so by theorem 2, 𝐻𝑠 (𝑀) ≥ 0.563353147953.
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Figure 6. Δ4 and Δ5

lemma 3.1 provides an obvious way of extending the results of the paper. If 𝑑 can
be found reliably for many different fractals, then lower bounds formulas for all of those
fractals are immediately found as well. However, we do not currently know if it is true
that 𝑑 even must be greater than zero for many fractals.

Conjecture 2. For a given fractal 𝐸 , 𝑑 > 0 if and only if 𝐻𝑠 (𝐸) > 0.

Conjecture 3. There exists a method to construct 𝑑 for any fractal 𝐸 if 𝑑 > 0, using
a technique similar to the scaling used in this paper.

These conjectures, if true, would strengthen both theorem 2 and lemma 3.1.

Acknowledgements. I would like to thank Patricia Prunty, Marie Michaud, and Kath-
leen Devlin, from James I. O’Neill Highschool, for their support throughout the writing
of this paper.
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